Literaturverzeichnis

Literaturverzeichnis

Literaturverzeichnis

Transparent & Sachkundig

Unser Literaturverzeichnis dient als Referenz zu den verwendeten Quellen unserer genetischen Analysen. Damit bieten wir Ihnen einen genauen Überblick über unsere verwendete Literatur und stehen Ihnen bei Fragen dazu selbstverständlich jederzeit zur Verfügung.

Übersicht der verwendeten Literatur​

Analysierte Themenbereiche

TNF-a (rs1800629):

Dereka, X., Mardas, N., Chin, S., Petrie, A., & Donos, N. (2012). A systematic review on the association between genetic predisposition and dental implant biological complications. Clinical oral implants research, 23(7), 775–788. https://doi.org/10.1111/j.1600-0501.2011.02329.x

Jacobi-Gresser, E., Huesker, K., & Schütt, S. (2013). Genetic and immunological markers predict titanium implant failure: a retrospective study. International journal of oral and maxillofacial surgery, 42(4), 537–543. https://doi.org/10.1016/j.ijom.2012.07.018

Nikolopoulos, G. K., Dimou, N. L., Hamodrakas, S. J., & Bagos, P. G. (2008). Cytokine gene polymorphisms in periodontal disease: a meta-analysis of 53 studies including 4178 cases and 4590 controls. Journal of clinical periodontology, 35(9), 754–767. https://doi.org/10.1111/j.1600-051X.2008.01298.x

Wei, X. M., Chen, Y. J., Wu, L., Cui, L. J., Hu, D. W., & Zeng, X. T. (2016). Tumor necrosis factor-α G-308A (rs1800629) polymorphism and aggressive periodontitis susceptibility: a meta-analysis of 16 case-control studies. Scientific reports, 6, 19099. https://doi.org/10.1038/srep19099

IL6 (rs1800795):

Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J. S., Humphries, S., & Woo, P. (1998). The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. The Journal of clinical investigation, 102(7), 1369–1376. https://doi.org/10.1172/JCI2629

Huth, C., Heid, I. M., Vollmert, C., Gieger, C., Grallert, H., Wolford, J. K., Langer, B., Thorand, B., Klopp, N., Hamid, Y. H., Pedersen, O., Hansen, T., Lyssenko, V., Groop, L., Meisinger, C., Döring, A., Löwel, H., Lieb, W., Hengstenberg, C., Rathmann, W., … Illig, T. (2006). IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants‘ data from 21 studies. Diabetes, 55(10), 2915–2921. https://doi.org/10.2337/db06-0600

Illig, T., Bongardt, F., Schöpfer, A., Müller-Scholze, S., Rathmann, W., Koenig, W., Thorand, B., Vollmert, C., Holle, R., Kolb, H., Herder, C., & Kooperative Gesundheitsforschung im Raum Augsburg/Cooperative Research in the Region of Augsburg (2004). Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. The Journal of clinical endocrinology and metabolism, 89(10), 5053–5058. https://doi.org/10.1210/jc.2004-0355


IL1RN (rs195598):

Baradaran-Rahimi, H., Radvar, M., Arab, H. R., Tavakol-Afshari, J., & Ebadian, A. R. (2010). Association of interleukin-1 receptor antagonist gene polymorphisms with generalized aggressive periodontitis in an Iranian population. Journal of periodontology, 81(9), 1342–1346. https://doi.org/10.1902/jop.2010.100073

Braosi, A. P., de Souza, C. M., Luczyszyn, S. M., Dirschnabel, A. J., Claudino, M., Olandoski, M., Probst, C. M., Garlet, G. P., Pecoits-Filho, R., & Trevilatto, P. C. (2012). Analysis of IL1 gene polymorphisms and transcript levels in periodontal and chronic kidney disease. Cytokine, 60(1), 76–82. https://doi.org/10.1016/j.cyto.2012.06.006

Ciurla, A., Szymańska, J., Płachno, B. J., & Bogucka-Kocka, A. (2021). Polymorphisms of Encoding Genes IL1RN and P2RX7 in Apical Root Resorption in Patients after Orthodontic Treatment. International journal of molecular sciences, 22(2), 777. https://doi.org/10.3390/ijms22020777

Jacobi-Gresser, E., Huesker, K., & Schütt, S. (2013). Genetic and immunological markers predict titanium implant failure: a retrospective study. International journal of oral and maxillofacial surgery, 42(4), 537–543. https://doi.org/10.1016/j.ijom.2012.07.018

Komatsu, Y., Galicia, J. C., Kobayashi, T., Yamazaki, K., & Yoshie, H. (2008). Association of interleukin-1 receptor antagonist +2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. International journal of immunogenetics, 35(2), 165–170. https://doi.org/10.1111/j.1744-313X.2008.00757.x

Laine, M. L., Leonhardt, A., Roos-Jansåker, A. M., Peña, A. S., van Winkelhoff, A. J., Winkel, E. G., & Renvert, S. (2006). IL-1RN gene polymorphism is associated with peri-implantitis. Clinical oral implants research, 17(4), 380–385. https://doi.org/10.1111/j.1600-0501.2006.01249.x

Trevilatto, P. C., de Souza Pardo, A. P., Scarel-Caminaga, R. M., de Brito, R. B., Jr, Alvim-Pereira, F., Alvim-Pereira, C. C., Probst, C. M., Garlet, G. P., Sallum, A. W., & Line, S. R. (2011). Association of IL1 gene polymorphisms with chronic periodontitis in Brazilians. Archives of oral biology, 56(1), 54–62. https://doi.org/10.1016/j.archoralbio.2010.09.004


CRP (rs3093066):

Neubauer, O., König, D., & Wagner, K. H. (2008). Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. European journal of applied physiology, 104(3), 417–426. https://doi.org/10.1007/s00421-008-0787-6

Obisesan, T. O., Leeuwenburgh, C., Phillips, T., Ferrell, R. E., Phares, D. A., Prior, S. J., & Hagberg, J. M. (2004). C-reactive protein genotypes affect baseline, but not exercise training-induced changes, in C-reactive protein levels. Arteriosclerosis, thrombosis, and vascular biology, 24(10), 1874–1879. https://doi.org/10.1161/01.ATV.0000140060.13203.22

Phillips, T., Childs, A. C., Dreon, D. M., Phinney, S., & Leeuwenburgh, C. (2003). A dietary supplement attenuates IL-6 and CRP after eccentric exercise in untrained males. Medicine and science in sports and exercise, 35(12), 2032–2037. https://doi.org/10.1249/01.MSS.0000099112.32342.10

IL6R (rs2228145):

Galicia, J. C., Tai, H., Komatsu, Y., Shimada, Y., Akazawa, K., & Yoshie, H. (2004). Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes and immunity, 5(6), 513–516. https://doi.org/10.1038/sj.gene.6364120

Gray, S. R., Clifford, M., Lancaster, R., Leggate, M., Davies, M., & Nimmo, M. A. (2009). The response of circulating levels of the interleukin-6/interleukin-6 receptor complex to exercise in young men. Cytokine, 47(2), 98–102. https://doi.org/10.1016/j.cyto.2009.05.011

Jones, S. A., Richards, P. J., Scheller, J., & Rose-John, S. (2005). IL-6 transsignaling: the in vivo consequences. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 25(5), 241–253. DOI: 10.1089/jir.2005.25.241

Pedersen, B. K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Wolsk-Petersen, E., & Febbraio, M. (2004). The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor?. The Proceedings of the Nutrition Society, 63(2), 263–267. https://doi.org/10.1079/PNS2004338

Reich, D., Patterson, N., Ramesh, V., De Jager, P. L., McDonald, G. J., Tandon, A., Choy, E., Hu, D., Tamraz, B., Pawlikowska, L., Wassel-Fyr, C., Huntsman, S., Waliszewska, A., Rossin, E., Li, R., Garcia, M., Reiner, A., Ferrell, R., Cummings, S., Kwok, P. Y., … Health, Aging and Body Composition (Health ABC) Study (2007). Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels. American journal of human genetics, 80(4), 716–726. https://doi.org/10.1086/513206

Robson-Ansley, P., Walshe, I., & Ward, D. (2011). The effect of carbohydrate ingestion on plasma interleukin-6, hepcidin and iron concentrations following prolonged exercise. Cytokine, 53(2), 196–200. https://doi.org/10.1016/j.cyto.2010.10.001


LCT (rs4988235):


Almon, R., Sjöström, M., & Nilsson, T. K. (2013). Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. Journal of nutritional science, 2, e26. https://doi.org/10.1017/jns.2013.11

Bácsi, K., Kósa, J. P., Lazáry, A., Balla, B., Horváth, H., Kis, A., Nagy, Z., Takács, I., Lakatos, P., & Speer, G. (2009). LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 20(4), 639–645. https://doi.org/10.1007/s00198-008-0709-9

Koek, W. N., van Meurs, J. B., van der Eerden, B. C., Rivadeneira, F., Zillikens, M. C., Hofman, A., Obermayer-Pietsch, B., Lips, P., Pols, H. A., Uitterlinden, A. G., & van Leeuwen, J. P. (2010). The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 25(9), 1980–1987. https://doi.org/10.1002/jbmr.83

Kuchay, R. A., Thapa, B. R., Mahmood, A., & Mahmood, S. (2011). Effect of C/T -13910 cis-acting regulatory variant on expression and activity of lactase in Indian children and its implication for early genetic screening of adult-type hypolactasia. Clinica chimica acta; international journal of clinical chemistry, 412(21-22), 1924–1930. https://doi.org/10.1016/j.cca.2011.06.032

Laaksonen, M. M., Mikkilä, V., Räsänen, L., Rontu, R., Lehtimäki, T. J., Viikari, J. S., Raitakari, O. T., & Cardiovascular Risk in Young Finns Study Group (2009). Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. The British journal of nutrition, 102(1), 8–17. https://doi.org/10.1017/S0007114508184677

Tolonen, S., Laaksonen, M., Mikkilä, V., Sievänen, H., Mononen, N., Räsänen, L., Viikari, J., Raitakari, O. T., Kähönen, M., Lehtimäki, T. J., & Cardiovascular Risk in Young Finns Study Group (2011). Lactase gene c/t(-13910) polymorphism, calcium intake, and pQCT bone traits in Finnish adults. Calcified tissue international, 88(2), 153–161. https://doi.org/10.1007/s00223-010-9440-6


HFE (rs1800562), HFE (rs1799945):


Beutler, E., West, C., & Gelbart, T. (1997). HLA-H and associated proteins in patients with hemochromatosis. Molecular medicine (Cambridge, Mass.), 3(6), 397–402.

Carella, M., D’Ambrosio, L., Totaro, A., Grifa, A., Valentino, M. A., Piperno, A., Girelli, D., Roetto, A., Franco, B., Gasparini, P., & Camaschella, C. (1997). Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. American journal of human genetics, 60(4), 828–832.

Jouanolle, A. M., Fergelot, P., Gandon, G., Yaouanq, J., Le Gall, J. Y., & David, V. (1997). A candidate gene for hemochromatosis: frequency of the C282Y and H63D mutations. Human genetics, 100(5-6), 544–547. https://doi.org/10.1007/s004390050549

Moirand, R., Deugnier, Y., & Brissot, P. (1999). Haemochromatosis and HFE gene. Acta gastro-enterologica Belgica, 62(4), 403–409.

Mura, C., Raguenes, O., & Férec, C. (1999). HFE mutations analysis in 711 hemochromatosis probands: evidence for S65C implication in mild form of hemochromatosis. Blood, 93(8), 2502–2505.

Vujić M. (2014). Molecular basis of HFE-hemochromatosis. Frontiers in pharmacology, 5, 42. https://doi.org/10.3389/fphar.2014.00042


HFE (rs1800730):

Asberg, A., Thorstensen, K., Hveem, K., & Bjerve, K. S. (2002). Hereditary hemochromatosis: the clinical significance of the S65C mutation. Genetic testing, 6(1), 59–62. https://doi.org/10.1089/109065702760093933

Crownover, B. K., & Covey, C. J. (2013). Hereditary hemochromatosis. American family physician, 87(3), 183–190.

de Juan, D., Reta, A., Castiella, A., Pozueta, J., Prada, A., & Cuadrado, E. (2001). HFE gene mutations analysis in Basque hereditary haemochromatosis patients and controls. European journal of human genetics : EJHG, 9(12), 961–964. https://doi.org/10.1038/sj.ejhg.5200731

Wallace, D. F., Walker, A. P., Pietrangelo, A., Clare, M., Bomford, A. B., Dixon, J. L., Powell, L. W., Subramaniam, V. N., & Dooley, J. S. (2002). Frequency of the S65C mutation of HFE and iron overload in 309 subjects heterozygous for C282Y. Journal of hepatology, 36(4), 474–479. https://doi.org/10.1016/s0168-8278(01)00304-x

 


VDR rs1544410:


Creatsa, M., Pliatsika, P., Kaparos, G., Antoniou, A., Armeni, E., Tsakonas, E., Panoulis, C., Alexandrou, A., Dimitraki, E., Christodoulakos, G., & Lambrinoudaki, I. (2011). The effect of vitamin D receptor BsmI genotype on the response to osteoporosis treatment in postmenopausal women: a pilot study. The journal of obstetrics and gynaecology research, 37(10), 1415–1422. https://doi.org/10.1111/j.1447-0756.2011.01557.x

Jia, F., Sun, R. F., Li, Q. H., Wang, D. X., Zhao, F., Li, J. M., Pu, Q., Zhang, Z. Z., Jin, Y., Liu, B. L., & Xiong, Y. (2013). Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genetic testing and molecular biomarkers, 17(1), 30–34. https://doi.org/10.1089/gtmb.2012.0267

Marc, J., Prezelj, J., Komel, R., & Kocijancic, A. (1999). VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 10(4), 303–306. https://doi.org/10.1007/s001980050231

Mossetti, G., Gennari, L., Rendina, D., De Filippo, G., Merlotti, D., De Paola, V., Fusco, P., Esposito, T., Gianfrancesco, F., Martini, G., Nuti, R., & Strazzullo, P. (2008). Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treatment in patients with Paget’s disease of bone. Calcified tissue international, 83(6), 414–424. https://doi.org/10.1007/s00223-008-9193-7

Palomba, S., Orio, F., Jr, Russo, T., Falbo, A., Tolino, A., Manguso, F., Nunziata, V., Mastrantonio, P., Lombardi, G., & Zullo, F. (2005). BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 16(8), 943–952. https://doi.org/10.1007/s00198-004-1800-5

Palomba, S., Numis, F. G., Mossetti, G., Rendina, D., Vuotto, P., Russo, T., Zullo, F., Nappi, C., & Nunziata, V. (2003). Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Human reproduction (Oxford, England), 18(1), 192–198. https://doi.org/10.1093/humrep/deg031


APOA1 (rs670):

Angotti, E., Mele, E., Costanzo, F., & Avvedimento, E. V. (1994). A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. The Journal of biological chemistry, 269(26), 17371–17374.

Juo, S. H., Wyszynski, D. F., Beaty, T. H., Huang, H. Y., & Bailey-Wilson, J. E. (1999). Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. American journal of medical genetics, 82(3), 235–241.

Mata, P., Lopez-Miranda, J., Pocovi, M., Alonso, R., Lahoz, C., Marin, C., Garces, C., Cenarro, A., Perez-Jimenez, F., de Oya, M., & Ordovas, J. M. (1998). Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis, 137(2), 367–376. https://doi.org/10.1016/s0021-9150(97)00265-7

Miles, R. R., Perry, W., Haas, J. V., Mosior, M. K., N’Cho, M., Wang, J. W., Yu, P., Calley, J., Yue, Y., Carter, Q., Han, B., Foxworthy, P., Kowala, M. C., Ryan, T. P., Solenberg, P. J., & Michael, L. F. (2013). Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. The Journal of biological chemistry, 288(9), 6386–6396. https://doi.org/10.1074/jbc.M112.410092

Ordovas, J. M., Corella, D., Cupples, L. A., Demissie, S., Kelleher, A., Coltell, O., Wilson, P. W., Schaefer, E. J., & Tucker, K. (2002). Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. The American journal of clinical nutrition, 75(1), 38–46. https://doi.org/10.1093/ajcn/75.1.38

Ordovas J. M. (2002). Gene-diet interaction and plasma lipid responses to dietary intervention. Biochemical Society transactions, 30(2), 68–73.

Ruaño, G., Seip, R. L., Windemuth, A., Zöllner, S., Tsongalis, G. J., Ordovas, J., Otvos, J., Bilbie, C., Miles, M., Zoeller, R., Visich, P., Gordon, P., Angelopoulos, T. J., Pescatello, L., Moyna, N., & Thompson, P. D. (2006). Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis, 185(1), 65–69. https://doi.org/10.1016/j.atherosclerosis.2005.05.029

Rudkowska, I., Dewailly, E., Hegele, R. A., Boiteau, V., Dubé-Linteau, A., Abdous, B., Giguere, Y., Chateau-Degat, M. L., & Vohl, M. C. (2013). Gene-diet interactions on plasma lipid levels in the Inuit population. The British journal of nutrition, 109(5), 953–961. https://doi.org/10.1017/S0007114512002231


AGT (rs699):


Corvol, P., & Jeunemaitre, X. (1997). Molecular genetics of human hypertension: role of angiotensinogen. Endocrine reviews, 18(5), 662–677. https://doi.org/10.1210/edrv.18.5.0312

Hunt, S. C., Cook, N. R., Oberman, A., Cutler, J. A., Hennekens, C. H., Allender, P. S., Walker, W. G., Whelton, P. K., & Williams, R. R. (1998). Angiotensinogen genotype, sodium reduction, weight loss, and prevention of hypertension: trials of hypertension prevention, phase II. Hypertension (Dallas, Tex. : 1979), 32(3), 393–401. https://doi.org/10.1161/01.hyp.32.3.393

Jeunemaitre, X., Soubrier, F., Kotelevtsev, Y. V., Lifton, R. P., Williams, C. S., Charru, A., Hunt, S. C., Hopkins, P. N., Williams, R. R., & Lalouel, J. M. (1992). Molecular basis of human hypertension: role of angiotensinogen. Cell, 71(1), 169–180. https://doi.org/10.1016/0092-8674(92)90275-h

Nakajima, T., Jorde, L. B., Ishigami, T., Umemura, S., Emi, M., Lalouel, J. M., & Inoue, I. (2002). Nucleotide diversity and haplotype structure of the human angiotensinogen gene in two populations. American journal of human genetics, 70(1), 108–123. https://doi.org/10.1086/338454

Norat, T., Bowman, R., Luben, R., Welch, A., Khaw, K. T., Wareham, N., & Bingham, S. (2008). Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. The American journal of clinical nutrition, 88(2), 392–397. https://doi.org/10.1093/ajcn/88.2.392

Svetkey, L. P., Moore, T. J., Simons-Morton, D. G., Appel, L. J., Bray, G. A., Sacks, F. M., Ard, J. D., Mortensen, R. M., Mitchell, S. R., Conlin, P. R., Kesari, M., & DASH collaborative research group (2001). Angiotensinogen genotype and blood pressure response in the Dietary Approaches to Stop Hypertension (DASH) study. Journal of hypertension, 19(11), 1949–1956. https://doi.org/10.1097/00004872-200111000-00004


GSTP1 (rs1695):

Rahbar, M. H., Samms-Vaughan, M., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., Loveland, K. A., Beecher, C., & McLaughlin, W. (2021). Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 18(4), 1377. https://doi.org/10.3390/ijerph18041377

Rahbar, M. H., Samms-Vaughan, M., Pitcher, M. R., Bressler, J., Hessabi, M., Loveland, K. A., Christian, M. A., Grove, M. L., Shakespeare-Pellington, S., Beecher, C., McLaughlin, W., & Boerwinkle, E. (2016). Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 13(11), 1095. https://doi.org/10.3390/ijerph13111095

Saad-Hussein, A., Noshy, M., Taha, M., El-Shorbagy, H., Shahy, E., & Abdel-Shafy, E. A. (2017). GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutation research. Genetic toxicology and environmental mutagenesis, 819, 20–25. https://doi.org/10.1016/j.mrgentox.2017.05.005

Singh, S., Kumar, V., Singh, P., Thakur, S., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2011). Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 725(1-2), 36–42. https://doi.org/10.1016/j.mrgentox.2011.06.006

Valeeva, E. T., Mukhammadiyeva, G. F., & Bakirov, A. B. (2020). Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. The international journal of occupational and environmental medicine, 11(1), 53–58. https://doi.org/10.15171/ijoem.2020.1771

Wong, R. H., Chang, S. Y., Ho, S. W., Huang, P. L., Liu, Y. J., Chen, Y. C., Yeh, Y. H., & Lee, H. S. (2008). Polymorphisms in metabolic GSTP1 and DNA-repair XRCC1 genes with an increased risk of DNA damage in pesticide-exposed fruit growers. Mutation research, 654(2), 168–175. https://doi.org/10.1016/j.mrgentox.2008.06.005



GSTM1 (Null-Allel):

Aliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2017). Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(7), 1271–1278. https://doi.org/10.1007/s10072-017-2934-5

Barrón Cuenca, J., Tirado, N., Barral, J., Ali, I., Levi, M., Stenius, U., Berglund, M., & Dreij, K. (2019). Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. The Science of the total environment, 695, 133942. https://doi.org/10.1016/j.scitotenv.2019.133942

de Oliveira, A. Á., de Souza, M. F., Lengert, A.v, de Oliveira, M. T., Camargo, R. B., Braga, G. Ú., Cólus, I. M., Barbosa, F., Jr, & Barcelos, G. R. (2014). Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population. BioMed research international, 2014, 940952. https://doi.org/10.1155/2014/940952

Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132

Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178

Lee, J. U., Jeong, J. Y., Kim, M. K., Min, S. A., Park, J. S., & Park, C. S. (2022). Association of GSTM1 and GSTT1 Null Genotypes with Toluene Diisocyanate-Induced Asthma. Canadian respiratory journal, 2022, 7977937. https://doi.org/10.1155/2022/7977937

Santillán-Sidón, P., Pérez-Morales, R., Anguiano, G., Ruiz-Baca, E., Osten, J. R., Olivas-Calderón, E., & Vazquez-Boucard, C. (2020). Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. Environmental science and pollution research international, 27(34), 43223–43232. https://doi.org/10.1007/s11356-020-10206-3

Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652

Sirivarasai, J., Wananukul, W., Kaojarern, S., Chanprasertyothin, S., Thongmung, N., Ratanachaiwong, W., Sura, T., & Sritara, P. (2013). Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. BioMed research international, 2013, 474963. https://doi.org/10.1155/2013/474963

Singh, S., Kumar, V., Singh, P., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2012). Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 741(1-2), 101–108. https://doi.org/10.1016/j.mrgentox.2011.11.001

Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8



GSTT1 (Null-Allel):

Ahluwalia, M., & Kaur, A. (2018). Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environmental science and pollution research international, 25(12), 11981–11986. https://doi.org/10.1007/s11356-018-1459-7

Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132

Ercegovac, M., Jovic, N., Sokic, D., Savic-Radojevic, A., Coric, V., Radic, T., Nikolic, D., Kecmanovic, M., Matic, M., Simic, T., & Pljesa-Ercegovac, M. (2015). GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure, 32, 30–36. https://doi.org/10.1016/j.seizure.2015.08.010

Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178

Goodrich, J. M., Wang, Y., Gillespie, B., Werner, R., Franzblau, A., & Basu, N. (2011). Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and applied pharmacology, 257(2), 301–308. https://doi.org/10.1016/j.taap.2011.09.014

Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652

Sun, B., Song, J., Wang, Y., Jiang, J., An, Z., Li, J., Zhang, Y., Wang, G., Li, H., Alexis, N. E., Jaspers, I., & Wu, W. (2021). Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental pollution (Barking, Essex : 1987), 285, 117215. https://doi.org/10.1016/j.envpol.2021.117215

Tahir, M., Rehman, M. Y. A., & Malik, R. N. (2021). Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. Environmental geochemistry and health, 43(11), 4441–4458. https://doi.org/10.1007/s10653-021-00926-x

Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8

Yohannes, Y. B., Nakayama, S. M. M., Yabe, J., Toyomaki, H., Kataba, A., Nakata, H., Muzandu, K., Ikenaka, Y., Choongo, K., & Ishizuka, M. (2022). Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environmental science and pollution research international, 29(5), 6622–6632. https://doi.org/10.1007/s11356-021-16098-1


CYP1A1 (rs1048943) / (rs4646903):


Abbas, M., Srivastava, K., Imran, M., & Banerjee, M. (2014). Association of CYP1A1 gene variants rs4646903 (T>C) and rs1048943 (A>G) with cervical cancer in a North Indian population. European journal of obstetrics, gynecology, and reproductive biology, 176, 68–74. https://doi.org/10.1016/j.ejogrb.2014.02.036

Cosma, G., Crofts, F., Taioli, E., Toniolo, P., & Garte, S. (1993). Relationship between genotype and function of the human CYP1A1 gene. Journal of toxicology and environmental health, 40(2-3), 309–316. https://doi.org/10.1080/15287399309531796

Hou, L., Chatterjee, N., Huang, W. Y., Baccarelli, A., Yadavalli, S., Yeager, M., Bresalier, R. S., Chanock, S. J., Caporaso, N. E., Ji, B. T., Weissfeld, J. L., & Hayes, R. B. (2005). CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis, 26(6), 1122–1128. https://doi.org/10.1093/carcin/bgi054

Islam, M. S., Ahmed, M. U., Sayeed, M. S., Maruf, A. A., Mostofa, A. G., Hussain, S. M., Kabir, Y., Daly, A. K., & Hasnat, A. (2013). Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clinica chimica acta; international journal of clinical chemistry, 416, 11–19. https://doi.org/10.1016/j.cca.2012.11.011

Ji, Y. N., Wang, Q., & Suo, L. J. (2012). CYP1A1 Ile462Val polymorphism contributes to lung cancer susceptibility among lung squamous carcinoma and smokers: a meta-analysis. PloS one, 7(8), e43397. https://doi.org/10.1371/journal.pone.0043397

Naif, H. M., Al-Obaide, M. A. I., Hassani, H. H., Hamdan, A. S., & Kalaf, Z. S. (2018). Association of Cytochrome CYP1A1 Gene Polymorphisms and Tobacco Smoking With the Risk of Breast Cancer in Women From Iraq. Frontiers in public health, 6, 96. https://doi.org/10.3389/fpubh.2018.00096

Roszak, A., Lianeri, M., Sowińska, A., & Jagodziński, P. P. (2014). CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population. Molecular diagnosis & therapy, 18(4), 445–450. https://doi.org/10.1007/s40291-014-0095-2

Sabitha, K., Reddy, M. V., & Jamil, K. (2010). Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer epidemiology, 34(5), 587–592. https://doi.org/10.1016/j.canep.2010.05.002

Sengupta, D., Banerjee, S., Mukhopadhyay, P., Mitra, R., Chaudhuri, T., Sarkar, A., Bhattacharjee, G., Nath, S., Roychoudhury, S., Bhattacharjee, S., & Sengupta, M. (2021). A comprehensive meta-analysis and a case-control study give insights into genetic susceptibility of lung cancer and subgroups. Scientific reports, 11(1), 14572. https://doi.org/10.1038/s41598-021-92275-z



CYP1B1 (rs1056836):

Butts, S. F., Sammel, M. D., Greer, C., Rebbeck, T. R., Boorman, D. W., & Freeman, E. W. (2014). Cigarettes, genetic background, and menopausal timing: the presence of single nucleotide polymorphisms in cytochrome P450 genes is associated with increased risk of natural menopause in European-American smokers. Menopause (New York, N.Y.), 21(7), 694–701. https://doi.org/10.1097/GME.0000000000000140

Butts, S. F., Freeman, E. W., Sammel, M. D., Queen, K., Lin, H., & Rebbeck, T. R. (2012). Joint effects of smoking and gene variants involved in sex steroid metabolism on hot flashes in late reproductive-age women. The Journal of clinical endocrinology and metabolism, 97(6), E1032–E1042. https://doi.org/10.1210/jc.2011-2216

Chen, B., Qiu, L. X., Li, Y., Xu, W., Wang, X. L., Zhao, W. H., & Wu, J. Q. (2010). The CYP1B1 Leu432Val polymorphism contributes to lung cancer risk: evidence from 6501 subjects. Lung cancer (Amsterdam, Netherlands), 70(3), 247–252. https://doi.org/10.1016/j.lungcan.2010.03.011

Cote, M. L., Yoo, W., Wenzlaff, A. S., Prysak, G. M., Santer, S. K., Claeys, G. B., Van Dyke, A. L., Land, S. J., & Schwartz, A. G. (2009). Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis, 30(4), 626–635. https://doi.org/10.1093/carcin/bgp033

Ko, Y., Abel, J., Harth, V., Bröde, P., Antony, C., Donat, S., Fischer, H. P., Ortiz-Pallardo, M. E., Thier, R., Sachinidis, A., Vetter, H., Bolt, H. M., Herberhold, C., & Brüning, T. (2001). Association of CYP1B1 codon 432 mutant allele in head and neck squamous cell cancer is reflected by somatic mutations of p53 in tumor tissue. Cancer research, 61(11), 4398–4404.

Liang, G., Pu, Y., & Yin, L. (2005). Rapid detection of single nucleotide polymorphisms related with lung cancer susceptibility of Chinese population. Cancer letters, 223(2), 265–274. https://doi.org/10.1016/j.canlet.2004.12.042

Liu, F., Luo, L. M., Wei, Y. G., Li, B., Wang, W. T., Wen, T. F., Yang, J. Y., Xu, M. Q., & Yan, L. N. (2015). Polymorphisms of the CYP1B1 gene and hepatocellular carcinoma risk in a Chinese population. Gene, 564(1), 14–20. https://doi.org/10.1016/j.gene.2015.03.035

Lopes, B. A., Emerenciano, M., Gonçalves, B. A., Vieira, T. M., Rossini, A., & Pombo-de-Oliveira, M. S. (2015). Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 Are Associated with Early Age Acute Leukemia. PloS one, 10(5), e0127308. https://doi.org/10.1371/journal.pone.0127308

Nock, N. L., Tang, D., Rundle, A., Neslund-Dudas, C., Savera, A. T., Bock, C. H., Monaghan, K. G., Koprowski, A., Mitrache, N., Yang, J. J., & Rybicki, B. A. (2007). Associations between smoking, polymorphisms in polycyclic aromatic hydrocarbon (PAH) metabolism and conjugation genes and PAH-DNA adducts in prostate tumors differ by race. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 16(6), 1236–1245. https://doi.org/10.1158/1055-9965.EPI-06-0736

Sillanpää, P., Heikinheimo, L., Kataja, V., Eskelinen, M., Kosma, V. M., Uusitupa, M., Vainio, H., Metsola, K., & Hirvonen, A. (2007). CYP1A1 and CYP1B1 genetic polymorphisms, smoking and breast cancer risk in a Finnish Caucasian population. Breast cancer research and treatment, 104(3), 287–297. https://doi.org/10.1007/s10549-006-9414-6

Timofeeva, M. N., Kropp, S., Sauter, W., Beckmann, L., Rosenberger, A., Illig, T., Jäger, B., Mittelstrass, K., Dienemann, H., LUCY-Consortium, Bartsch, H., Bickeböller, H., Chang-Claude, J. C., Risch, A., & Wichmann, H. E. (2009). CYP450 polymorphisms as risk factors for early-onset lung cancer: gender-specific differences. Carcinogenesis, 30(7), 1161–1169. https://doi.org/10.1093/carcin/bgp102


GPX1 (rs1050450):


Bhatti, P., Stewart, P. A., Hutchinson, A., Rothman, N., Linet, M. S., Inskip, P. D., & Rajaraman, P. (2009). Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 18(6), 1841–1848. https://doi.org/10.1158/1055-9965.EPI-09-0197

Chen, J., Cao, Q., Qin, C., Shao, P., Wu, Y., Wang, M., Zhang, Z., & Yin, C. (2011). GPx-1 polymorphism (rs1050450) contributes to tumor susceptibility: evidence from meta-analysis. Journal of cancer research and clinical oncology, 137(10), 1553–1561. https://doi.org/10.1007/s00432-011-1033-x

Combs, G. F., Jr, Jackson, M. I., Watts, J. C., Johnson, L. K., Zeng, H., Idso, J., Schomburg, L., Hoeg, A., Hoefig, C. S., Chiang, E. C., Waters, D. J., Davis, C. D., & Milner, J. A. (2012). Differential responses to selenomethionine supplementation by sex and genotype in healthy adults. The British journal of nutrition, 107(10), 1514–1525. https://doi.org/10.1017/S0007114511004715

Cominetti, C., de Bortoli, M. C., Purgatto, E., Ong, T. P., Moreno, F. S., Garrido, A. B., Jr, & Cozzolino, S. M. (2011). Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition (Burbank, Los Angeles County, Calif.), 27(9), 891–896. https://doi.org/10.1016/j.nut.2010.09.003

Hong, Z., Tian, C., & Zhang, X. (2013). GPX1 gene Pro200Leu polymorphism, erythrocyte GPX activity, and cancer risk. Molecular biology reports, 40(2), 1801–1812. https://doi.org/10.1007/s11033-012-2234-3

Jablonska, E., Gromadzinska, J., Reszka, E., Wasowicz, W., Sobala, W., Szeszenia-Dabrowska, N., & Boffetta, P. (2009). Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. European journal of nutrition, 48(6), 383–386. https://doi.org/10.1007/s00394-009-0023-0

Karunasinghe, N., Han, D. Y., Zhu, S., Yu, J., Lange, K., Duan, H., Medhora, R., Singh, N., Kan, J., Alzaher, W., Chen, B., Ko, S., Triggs, C. M., & Ferguson, L. R. (2012). Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: relationship to markers of oxidative stress in men from Auckland, New Zealand. Genes & nutrition, 7(2), 179–190. https://doi.org/10.1007/s12263-011-0259-1

Miller, J. C., Thomson, C. D., Williams, S. M., van Havre, N., Wilkins, G. T., Morison, I. M., Ludgate, J. L., & Skeaff, C. M. (2012). Influence of the glutathione peroxidase 1 Pro200Leu polymorphism on the response of glutathione peroxidase activity to selenium supplementation: a randomized controlled trial. The American journal of clinical nutrition, 96(4), 923–931. https://doi.org/10.3945/ajcn.112.043125

Steinbrecher, A., Méplan, C., Hesketh, J., Schomburg, L., Endermann, T., Jansen, E., Akesson, B., Rohrmann, S., & Linseisen, J. (2010). Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19(11), 2958–2968. https://doi.org/10.1158/1055-9965.EPI-10-0364

Soerensen, M., Christensen, K., Stevnsner, T., & Christiansen, L. (2009). The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mechanisms of ageing and development, 130(5), 308–314. https://doi.org/10.1016/j.mad.2009.01.005

Tang, T. S., Prior, S. L., Li, K. W., Ireland, H. A., Bain, S. C., Hurel, S. J., Cooper, J. A., Humphries, S. E., & Stephens, J. W. (2012). Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutrition, metabolism, and cardiovascular diseases : NMCD, 22(5), 417–425. https://doi.org/10.1016/j.numecd.2010.08.001

Xiong, Y. M., Mo, X. Y., Zou, X. Z., Song, R. X., Sun, W. Y., Lu, W., Chen, Q., Yu, Y. X., & Zang, W. J. (2010). Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. Osteoarthritis and cartilage, 18(6), 817–824. https://doi.org/10.1016/j.joca.2010.02.004


GSTT1 (Null-Allel):


Ahluwalia, M., & Kaur, A. (2018). Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environmental science and pollution research international, 25(12), 11981–11986. https://doi.org/10.1007/s11356-018-1459-7

Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132

Ercegovac, M., Jovic, N., Sokic, D., Savic-Radojevic, A., Coric, V., Radic, T., Nikolic, D., Kecmanovic, M., Matic, M., Simic, T., & Pljesa-Ercegovac, M. (2015). GSTA1, GSTM1, GSTP1 and GSTT1 polymorphisms in progressive myoclonus epilepsy: A Serbian case-control study. Seizure, 32, 30–36. https://doi.org/10.1016/j.seizure.2015.08.010

Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178

Goodrich, J. M., Wang, Y., Gillespie, B., Werner, R., Franzblau, A., & Basu, N. (2011). Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and applied pharmacology, 257(2), 301–308. https://doi.org/10.1016/j.taap.2011.09.014

Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652

Sun, B., Song, J., Wang, Y., Jiang, J., An, Z., Li, J., Zhang, Y., Wang, G., Li, H., Alexis, N. E., Jaspers, I., & Wu, W. (2021). Associations of short-term PM2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. Environmental pollution (Barking, Essex : 1987), 285, 117215. https://doi.org/10.1016/j.envpol.2021.117215

Tahir, M., Rehman, M. Y. A., & Malik, R. N. (2021). Heavy metal-associated oxidative stress and glutathione S-transferase polymorphisms among E-waste workers in Pakistan. Environmental geochemistry and health, 43(11), 4441–4458. https://doi.org/10.1007/s10653-021-00926-x

Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8

Yohannes, Y. B., Nakayama, S. M. M., Yabe, J., Toyomaki, H., Kataba, A., Nakata, H., Muzandu, K., Ikenaka, Y., Choongo, K., & Ishizuka, M. (2022). Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environmental science and pollution research international, 29(5), 6622–6632. https://doi.org/10.1007/s11356-021-16098-1

 


GSTM1 (Null-Allel):


Aliomrani, M., Sahraian, M. A., Shirkhanloo, H., Sharifzadeh, M., Khoshayand, M. R., & Ghahremani, M. H. (2017). Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 38(7), 1271–1278. https://doi.org/10.1007/s10072-017-2934-5

Barrón Cuenca, J., Tirado, N., Barral, J., Ali, I., Levi, M., Stenius, U., Berglund, M., & Dreij, K. (2019). Increased levels of genotoxic damage in a Bolivian agricultural population exposed to mixtures of pesticides. The Science of the total environment, 695, 133942. https://doi.org/10.1016/j.scitotenv.2019.133942

de Oliveira, A. Á., de Souza, M. F., Lengert, A.v, de Oliveira, M. T., Camargo, R. B., Braga, G. Ú., Cólus, I. M., Barbosa, F., Jr, & Barcelos, G. R. (2014). Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population. BioMed research international, 2014, 940952. https://doi.org/10.1155/2014/940952

Doukali, H., Ben Salah, G., Hamdaoui, L., Hajjaji, M., Tabebi, M., Ammar-Keskes, L., Masmoudi, M. E., & Kamoun, H. (2017). Oxidative stress and glutathione S-transferase genetic polymorphisms in medical staff professionally exposed to ionizing radiation. International journal of radiation biology, 93(7), 697–704. https://doi.org/10.1080/09553002.2017.1305132

Ghelli, F., Bellisario, V., Squillacioti, G., Panizzolo, M., Santovito, A., & Bono, R. (2021). Formaldehyde in Hospitals Induces Oxidative Stress: The Role of GSTT1 and GSTM1 Polymorphisms. Toxics, 9(8), 178. https://doi.org/10.3390/toxics9080178

Lee, J. U., Jeong, J. Y., Kim, M. K., Min, S. A., Park, J. S., & Park, C. S. (2022). Association of GSTM1 and GSTT1 Null Genotypes with Toluene Diisocyanate-Induced Asthma. Canadian respiratory journal, 2022, 7977937. https://doi.org/10.1155/2022/7977937

Santillán-Sidón, P., Pérez-Morales, R., Anguiano, G., Ruiz-Baca, E., Osten, J. R., Olivas-Calderón, E., & Vazquez-Boucard, C. (2020). Glutathione S-transferase activity and genetic polymorphisms associated with exposure to organochloride pesticides in Todos Santos, BCS, Mexico: a preliminary study. Environmental science and pollution research international, 27(34), 43223–43232. https://doi.org/10.1007/s11356-020-10206-3

Sharma, T., Banerjee, B. D., Thakur, G. K., Guleria, K., & Mazumdar, D. (2019). Polymorphism of xenobiotic metabolizing gene and susceptibility of epithelial ovarian cancer with reference to organochlorine pesticides exposure. Experimental biology and medicine (Maywood, N.J.), 244(16), 1446–1453. https://doi.org/10.1177/1535370219878652

Sirivarasai, J., Wananukul, W., Kaojarern, S., Chanprasertyothin, S., Thongmung, N., Ratanachaiwong, W., Sura, T., & Sritara, P. (2013). Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. BioMed research international, 2013, 474963. https://doi.org/10.1155/2013/474963

Singh, S., Kumar, V., Singh, P., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2012). Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 741(1-2), 101–108. https://doi.org/10.1016/j.mrgentox.2011.11.001

Tang, J. J., Wang, M. W., Jia, E. Z., Yan, J. J., Wang, Q. M., Zhu, J., Yang, Z. J., Lu, X., & Wang, L. S. (2010). The common variant in the GSTM1 and GSTT1 genes is related to markers of oxidative stress and inflammation in patients with coronary artery disease: a case-only study. Molecular biology reports, 37(1), 405–410. https://doi.org/10.1007/s11033-009-9877-8



SOD2 (rs4880):

Funke, S., Risch, A., Nieters, A., Hoffmeister, M., Stegmaier, C., Seiler, C. M., Brenner, H., & Chang-Claude, J. (2009). Genetic Polymorphisms in Genes Related to Oxidative Stress (GSTP1, GSTM1, GSTT1, CAT, MnSOD, MPO, eNOS) and Survival of Rectal Cancer Patients after Radiotherapy. Journal of cancer epidemiology, 2009, 302047. https://doi.org/10.1155/2009/302047

Massy, Z. A., Stenvinkel, P., & Drueke, T. B. (2009). The role of oxidative stress in chronic kidney disease. Seminars in dialysis, 22(4), 405–408. https://doi.org/10.1111/j.1525-139X.2009.00590.x

Lightfoot, T. J., Skibola, C. F., Smith, A. G., Forrest, M. S., Adamson, P. J., Morgan, G. J., Bracci, P. M., Roman, E., Smith, M. T., & Holly, E. A. (2006). Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin’s lymphoma. Haematologica, 91(9), 1222–1227.

Paludo, F. J., Bristot, I. J., Alho, C. S., Gelain, D. P., & Moreira, J. C. (2014). Effects of 47C allele (rs4880) of the SOD2 gene in the production of intracellular reactive species in peripheral blood mononuclear cells with and without lipopolysaccharides induction. Free radical research, 48(2), 190–199. https://doi.org/10.3109/10715762.2013.859385

Pourvali, K., Abbasi, M., & Mottaghi, A. (2016). Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications. Avicenna journal of medical biotechnology, 8(2), 48–56.

Soerensen, M., Christensen, K., Stevnsner, T., & Christiansen, L. (2009). The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mechanisms of ageing and development, 130(5), 308–314. https://doi.org/10.1016/j.mad.2009.01.005

Sutton, A., Imbert, A., Igoudjil, A., Descatoire, V., Cazanave, S., Pessayre, D., & Degoul, F. (2005). The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenetics and genomics, 15(5), 311–319. https://doi.org/10.1097/01213011-200505000-00006

Sutton, A., Khoury, H., Prip-Buus, C., Cepanec, C., Pessayre, D., & Degoul, F. (2003). The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics, 13(3), 145–157. https://doi.org/10.1097/01.fpc.0000054067.64000.8f

Zejnilovic, J., Akev, N., Yilmaz, H., & Isbir, T. (2009). Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer genetics and cytogenetics, 189(1), 1–4. https://doi.org/10.1016/j.cancergencyto.2008.06.017



GSTP1 (rs1695):

Rahbar, M. H., Samms-Vaughan, M., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., Loveland, K. A., Beecher, C., & McLaughlin, W. (2021). Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 18(4), 1377. https://doi.org/10.3390/ijerph18041377

Rahbar, M. H., Samms-Vaughan, M., Pitcher, M. R., Bressler, J., Hessabi, M., Loveland, K. A., Christian, M. A., Grove, M. L., Shakespeare-Pellington, S., Beecher, C., McLaughlin, W., & Boerwinkle, E. (2016). Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. International journal of environmental research and public health, 13(11), 1095. https://doi.org/10.3390/ijerph13111095

Saad-Hussein, A., Noshy, M., Taha, M., El-Shorbagy, H., Shahy, E., & Abdel-Shafy, E. A. (2017). GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutation research. Genetic toxicology and environmental mutagenesis, 819, 20–25. https://doi.org/10.1016/j.mrgentox.2017.05.005

Singh, S., Kumar, V., Singh, P., Thakur, S., Banerjee, B. D., Rautela, R. S., Grover, S. S., Rawat, D. S., Pasha, S. T., Jain, S. K., & Rai, A. (2011). Genetic polymorphisms of GSTM1, GSTT1 and GSTP1 and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation research, 725(1-2), 36–42. https://doi.org/10.1016/j.mrgentox.2011.06.006

Valeeva, E. T., Mukhammadiyeva, G. F., & Bakirov, A. B. (2020). Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. The international journal of occupational and environmental medicine, 11(1), 53–58. https://doi.org/10.15171/ijoem.2020.1771

Wong, R. H., Chang, S. Y., Ho, S. W., Huang, P. L., Liu, Y. J., Chen, Y. C., Yeh, Y. H., & Lee, H. S. (2008). Polymorphisms in metabolic GSTP1 and DNA-repair XRCC1 genes with an increased risk of DNA damage in pesticide-exposed fruit growers. Mutation research, 654(2), 168–175. https://doi.org/10.1016/j.mrgentox.2008.06.005


MTRR (rs1801394):


Cai, B., Zhang, T., Zhong, R., Zou, L., Zhu, B., Chen, W., Shen, N., Ke, J., Lou, J., Wang, Z., Sun, Y., Liu, L., & Song, R. (2014). Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PloS one, 9(3), e89609. https://doi.org/10.1371/journal.pone.0089609

García-Minguillán, C. J., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Bueno, O., Berrocal-Zaragoza, M. I., Molloy, A. M., Ueland, P. M., Meyer, K., & Murphy, M. M. (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes & nutrition, 9(6), 435. https://doi.org/10.1007/s12263-014-0435-1

Olteanu, H., Munson, T., & Banerjee, R. (2002). Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry, 41(45), 13378–13385. https://doi.org/10.1021/bi020536s

van Beynum, I. M., Kouwenberg, M., Kapusta, L., den Heijer, M., van der Linden, I. J., Daniels, O., & Blom, H. J. (2006). MTRR 66A>G polymorphism in relation to congenital heart defects. Clinical chemistry and laboratory medicine, 44(11), 1317–1323. https://doi.org/10.1515/CCLM.2006.254

Yu, D., Yang, L., Shen, S., Fan, C., Zhang, W., & Mo, X. (2014). Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies. Pediatric cardiology, 35(7), 1091–1098. https://doi.org/10.1007/s00246-014-0948-9

Zeng, W., Liu, L., Tong, Y., Liu, H. M., Dai, L., & Mao, M. (2011). A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genetics and molecular research : GMR, 10(4), 2597–2605. https://doi.org/10.4238/2011.October.25.7



MTHFR (rs1801133):

Al-Batayneh, K. M., Zoubi, M. S. A., Shehab, M., Al-Trad, B., Bodoor, K., Khateeb, W. A., Aljabali, A. A. A., Hamad, M. A., & Eaton, G. (2018). Association between MTHFR 677C>T Polymorphism and Vitamin B12 Deficiency: A Case-control Study. Journal of medical biochemistry, 37(2), 141–147. https://doi.org/10.1515/jomb-2017-0051

Biselli, P. M., Sanches de Alvarenga, M. P., Abbud-Filho, M., Ferreira-Baptista, M. A., Galbiatti, A. L., Goto, M. T., Cardoso, M. A., Eberlin, M. N., Haddad, R., Goloni-Bertollo, E. M., & Pavarino-Bertelli, E. C. (2007). Effect of folate, vitamin B6, and vitamin B12 intake and MTHFR C677T polymorphism on homocysteine concentrations of renal transplant recipients. Transplantation proceedings, 39(10), 3163–3165. https://doi.org/10.1016/j.transproceed.2007.08.098

Bouzidi, N., Hassine, M., Fodha, H., Ben Messaoud, M., Maatouk, F., Gamra, H., & Ferchichi, S. (2020). Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Scientific reports, 10(1), 10064. https://doi.org/10.1038/s41598-020-66937-3

Cheng, Y., Liu, S., Chen, D., Yang, Y., Liang, Q., Huo, Y., Zhou, Z., Zhang, N., Wang, Z., Liu, L., Song, Y., Liu, X., Duan, Y., Liang, X., Hou, B., Wang, B., Tang, G., Qin, X., & Yan, F. (2022). Association between serum 5-methyltetrahydrofolate and homocysteine in Chinese hypertensive participants with different MTHFR C677T polymorphisms: a cross-sectional study. Nutrition journal, 21(1), 29. https://doi.org/10.1186/s12937-022-00786-w

Chmurzynska, A., Seremak-Mrozikiewicz, A., Malinowska, A. M., Różycka, A., Radziejewska, A., KurzawiŃska, G., Barlik, M., Wolski, H., & Drews, K. (2020). Associations between folate and choline intake, homocysteine metabolism, and genetic polymorphism of MTHFR, BHMT and PEMT in healthy pregnant Polish women. Nutrition & dietetics: the journal of the Dietitians Association of Australia, 77(3), 368–372. https://doi.org/10.1111/1747-0080.12549

García-Minguillán, C. J., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Bueno, O., Berrocal-Zaragoza, M. I., Molloy, A. M., Ueland, P. M., Meyer, K., & Murphy, M. M. (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes & nutrition, 9(6), 435. https://doi.org/10.1007/s12263-014-0435-1

Klerk, M., Verhoef, P., Clarke, R., Blom, H. J., Kok, F. J., Schouten, E. G., & MTHFR Studies Collaboration Group (2002). MTHFR 677C–>T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA, 288(16), 2023–2031. https://doi.org/10.1001/jama.288.16.2023

Qin, X., Spence, J. D., Li, J., Zhang, Y., Li, Y., Sun, N., Liang, M., Song, Y., Zhang, Y., Wang, B., Cheng, X., Zhao, L., Wang, X., Xu, X., & Huo, Y. (2020). Interaction of serum vitamin B12 and folate with MTHFR genotypes on risk of ischemic stroke. Neurology, 94(11), e1126–e1136. https://doi.org/10.1212/WNL.0000000000008932

Shivkar, R. R., Gawade, G. C., Padwal, M. K., Diwan, A. G., Mahajan, S. A., & Kadam, C. Y. (2022). Association of MTHFR C677T (rs1801133) and A1298C (rs1801131) Polymorphisms with Serum Homocysteine, Folate and Vitamin B12 in Patients with Young Coronary Artery Disease. Indian journal of clinical biochemistry : IJCB, 37(2), 224–231. https://doi.org/10.1007/s12291-021-00982-1

Steluti, J., Carvalho, A. M., Carioca, A. A. F., Miranda, A., Gattás, G. J. F., Fisberg, R. M., & Marchioni, D. M. (2017). Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients, 9(6), 539. https://doi.org/10.3390/nu9060539

Zhang, J., Zeng, C., Huang, X., Liao, Q., Chen, H., Liu, F., Sun, D., Luo, S., Xiao, Y., Xu, W., Zeng, D., Song, M., & Tian, F. (2022). Association of homocysteine and polymorphism of methylenetetrahydrofolate reductase with early-onset post stroke depression. Frontiers in nutrition, 9, 1078281. https://doi.org/10.3389/fnut.2022.1078281


APOB (rs5742904):

Angotti, E., Mele, E., Costanzo, F., & Avvedimento, E. V. (1994). A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. The Journal of biological chemistry, 269(26), 17371–17374.

Juo, S. H., Wyszynski, D. F., Beaty, T. H., Huang, H. Y., & Bailey-Wilson, J. E. (1999). Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis. American journal of medical genetics, 82(3), 235–241.

Mata, P., Lopez-Miranda, J., Pocovi, M., Alonso, R., Lahoz, C., Marin, C., Garces, C., Cenarro, A., Perez-Jimenez, F., de Oya, M., & Ordovas, J. M. (1998). Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis, 137(2), 367–376. https://doi.org/10.1016/s0021-9150(97)00265-7

Miles, R. R., Perry, W., Haas, J. V., Mosior, M. K., N’Cho, M., Wang, J. W., Yu, P., Calley, J., Yue, Y., Carter, Q., Han, B., Foxworthy, P., Kowala, M. C., Ryan, T. P., Solenberg, P. J., & Michael, L. F. (2013). Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. The Journal of biological chemistry, 288(9), 6386–6396. https://doi.org/10.1074/jbc.M112.410092

Ordovas, J. M., Corella, D., Cupples, L. A., Demissie, S., Kelleher, A., Coltell, O., Wilson, P. W., Schaefer, E. J., & Tucker, K. (2002). Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study. The American journal of clinical nutrition, 75(1), 38–46. https://doi.org/10.1093/ajcn/75.1.38

Ordovas J. M. (2002). Gene-diet interaction and plasma lipid responses to dietary intervention. Biochemical Society transactions, 30(2), 68–73.

Ruaño, G., Seip, R. L., Windemuth, A., Zöllner, S., Tsongalis, G. J., Ordovas, J., Otvos, J., Bilbie, C., Miles, M., Zoeller, R., Visich, P., Gordon, P., Angelopoulos, T. J., Pescatello, L., Moyna, N., & Thompson, P. D. (2006). Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis, 185(1), 65–69. https://doi.org/10.1016/j.atherosclerosis.2005.05.029

Rudkowska, I., Dewailly, E., Hegele, R. A., Boiteau, V., Dubé-Linteau, A., Abdous, B., Giguere, Y., Chateau-Degat, M. L., & Vohl, M. C. (2013). Gene-diet interactions on plasma lipid levels in the Inuit population. The British journal of nutrition, 109(5), 953–961. https://doi.org/10.1017/S0007114512002231



SREBP2 (rs2228314):

Fan, Y. M., Karhunen, P. J., Levula, M., Ilveskoski, E., Mikkelsson, J., Kajander, O. A., Järvinen, O., Oksala, N., Thusberg, J., Vihinen, M., Salenius, J. P., Kytömäki, L., Soini, J. T., Laaksonen, R., & Lehtimäki, T. (2008). Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Thrombosis journal, 6, 17. https://doi.org/10.1186/1477-9560-6-17

Wang, Y., Tong, J., Chang, B., Wang, B. F., Zhang, D., & Wang, B. Y. (2014). Relationship of SREBP-2 rs2228314 G>C polymorphism with nonalcoholic fatty liver disease in a Han Chinese population. Genetic testing and molecular biomarkers, 18(9), 653–657. https://doi.org/10.1089/gtmb.2014.0116


APOA5 (rs662799):

Aberle, J., Evans, D., Beil, F. U., & Seedorf, U. (2005). A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clinical genetics, 68(2), 152–154. https://doi.org/10.1111/j.1399-0004.2005.00463.x

Aouizerat, B. E., Kulkarni, M., Heilbron, D., Drown, D., Raskin, S., Pullinger, C. R., Malloy, M. J., & Kane, J. P. (2003). Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. Journal of lipid research, 44(6), 1167–1173. https://doi.org/10.1194/jlr.M200480-JLR200

Dorfmeister, B., Cooper, J. A., Stephens, J. W., Ireland, H., Hurel, S. J., Humphries, S. E., & Talmud, P. J. (2007). The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochimica et biophysica acta, 1772(3), 355–363. https://doi.org/10.1016/j.bbadis.2006.11.008


NQO1 (rs1800566):

Fischer, A., Schmelzer, C., Rimbach, G., Niklowitz, P., Menke, T., & Döring, F. (2011). Association between genetic variants in the Coenzyme Q10 metabolism and Coenzyme Q10 status in humans. BMC research notes, 4, 245. https://doi.org/10.1186/1756-0500-4-245

Freriksen, J. J., Salomon, J., Roelofs, H. M., Te Morsche, R. H., van der Stappen, J. W., Dura, P., Witteman, B. J., Lacko, M., & Peters, W. H. (2014). Genetic polymorphism 609C>T in NAD(P)H:quinone oxidoreductase 1 enhances the risk of proximal colon cancer. Journal of human genetics, 59(7), 381–386. https://doi.org/10.1038/jhg.2014.38

Traver, R. D., Siegel, D., Beall, H. D., Phillips, R. M., Gibson, N. W., Franklin, W. A., & Ross, D. (1997). Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). British journal of cancer, 75(1), 69–75. https://doi.org/10.1038/bjc.1997.11

MTHFR:

Colson, N. J., Naug, H. L., Nikbakht, E., Zhang, P., & McCormack, J. (2017). The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. European journal of nutrition, 56(1), 247–260. https://doi.org/10.1007/s00394-015-1076-x

Födinger, M., Buchmayer, H., Heinz, G., Papagiannopoulos, M., Kletzmayr, J., Rasoul-Rockenschaub, S., Hörl, W. H., & Sunder-Plassmann, G. (2000). Effect of MTHFR 1298A–>C and MTHFR 677C–>T genotypes on total homocysteine, folate, and vitamin B(12) plasma concentrations in kdiney graft recipients. Journal of the American Society of Nephrology : JASN, 11(10), 1918–1925. https://doi.org/10.1681/ASN.V11101918

van der Put, N. M., Gabreëls, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., van den Heuvel, L. P., & Blom, H. J. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects?. American journal of human genetics, 62(5), 1044–1051. https://doi.org/10.1086/301825


CYP1A2 (rs762551):

Bågeman, E., Ingvar, C., Rose, C., & Jernström, H. (2008). Coffee consumption and CYP1A2*1F genotype modify age at breast cancer diagnosis and estrogen receptor status. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(4), 895–901. https://doi.org/10.1158/1055-9965.EPI-07-0555

Sachse, C., Brockmöller, J., Bauer, S., & Roots, I. (1999). Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. British journal of clinical pharmacology, 47(4), 445–449. https://doi.org/10.1046/j.1365-2125.1999.00898.x

Analysierte Krankheitsbilder


APOE – apolipoprotein E (E2/E3/E4):

Bagyinszky E et al. The genetics of Alzheimer’s disease. Clin Interv Aging. 2014 Apr 1,9:535-51. https://doi.org/10.2147/CIA.S51571

Farrer et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997 Oct 22-29,278(16):1349-56. 

Jin-Tai Yu et al. Apolipoprotein E in Alzheimer’s Disease: An Update. Annual Review of Neuroscience 2014. https://doi.org/10.1146/annurev-neuro-071013-014300

Liu CC et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013 Feb,9(2):106-18. https://doi.org/10.1038/nrneurol.2012.263

Tang et al. The APOE-epsilon4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA. 1998 Mar 11,279(10):751-5. https://doi.org/10.1001/jama.279.10.751

 

CASC8 (rs6983267):

Abulí A et al. Susceptibility genetic variants associated with colorectal cancer risk correlate with cancer phenotype. Gastroenterology. 2010 Sep,139(3):788-96, 796.e1-6. https://doi.org/10.1053/j.gastro.2010.05.072

Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72. https://doi.org/10.1093/hmg/ddn166

Cicek MS et al. Functional and clinical significance of variants localized to 8q24 in colon cancer. Cancer Epidemiol Biomarkers Prev. 2009 Sep,18(9):2492-500. https://doi.org/10.1158/1055-9965.EPI-09-0362

Cui R et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut. 2011 Jun,60(6):799-805. https://doi.org/10.1136/gut.2010.215947

Curtin K et al. Meta association of colorectal cancer confirms risk alleles at 8q24 and 18q21. Cancer Epidemiol Biomarkers Prev. 2009 Feb,18(2):616-21. https://doi.org/10.1158/1055-9965.EPI-08-0690

Haerian MS et al. Association of 8q24.21 loci with the risk of colorectal cancer: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2011 Oct,26(10):1475-84. https://doi.org/10.1111/j.1440-1746.2011.06831.x

He J et al. Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):70-81. https://doi.org/10.1158/1055-9965.EPI-10-0892

Hutter CM et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer. 2010 Dec 4,10:670. https://doi.org/10.1186/1471-2407-10-670

Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015. 

Li M et al. Genetic variants on chromosome 8q24 and colorectal neoplasia risk: a case-control study in China and a meta-analysis of the published literature. PLoS One. 2011 Mar 24,6(3):e18251. https://doi.org/10.1371/journal.pone.0018251

Matsuo K et al. Association between an 8q24 locus and the risk of colorectal cancer in Japanese. BMC Cancer. 2009 Oct 26,9:379. https://doi.org/10.1186/1471-2407-9-379

Montazeri Z et al. Systematic meta-analyses and field synopsis of genetic association studies in colorectal adenomas. Int J Epidemiol. 2016 Feb,45(1):186-205. https://doi.org/10.1093/ije/dyv185

Nan H et al. Aspirin use, 8q24 single nucleotide polymorphism rs6983267, and colorectal cancer according to CTNNB1 alterations. J Natl Cancer Inst. 2013 Dec 18,105(24):1852-61. https://doi.org/10.1093/jnci/djt331 

Poynter JN et al. Variants on 9p24 and 8q24 are associated with risk of colorectal cancer: results from the Colon Cancer Family Registry. Cancer Res. 2007 Dec 1,67(23):11128-32. https://doi.org/10.1158/0008-5472.CAN-07-3239

Schafmayer C et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int J Cancer. 2009 Jan 1,124(1):75-80. https://doi.org/10.1002/ijc.23872

von Holst S et al. Association studies on 11 published colorectal cancer risk loci. Br J Cancer. 2010 Aug 10,103(4):575-80. https://doi.org/10.1038/sj.bjc.6605774

Xiong F et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2010 Jul,19(7):1855-61. https://doi.org/10.1158/1055-9965.EPI-10-0210

Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884

 

CASC8 (rs10505477):

Gruber SB et al. Genetic variation in 8q24 associated with risk of colorectal cancer. Cancer Biol Ther. 2007 Jul,6(7):1143-7. https://doi.org/10.4161/cbt.6.7.4704

Hutter CM et al. Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis. BMC Cancer. 2010 Dec 4,10:670. https://doi.org/10.1186/1471-2407-10-670

Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015. 

Real LM et al. A colorectal cancer susceptibility new variant at 4q26 in the Spanish population identified by genome-wide association analysis. PLoS One. 2014 Jun 30,9(6):e101178. https://doi.org/10.1371/journal.pone.0101178

Schafmayer C et al. Investigation of the colorectal cancer susceptibility region on chromosome 8q24.21 in a large German case-control sample. Int J Cancer. 2009 Jan 1,124(1):75-80. https://doi.org/10.1002/ijc.23872

Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750

Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884

 

CASC8 (rs10808555):

Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72. https://doi.org/10.1093/hmg/ddn166

Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. 

Yang B et al. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol Carcinog. 2014 Feb,53 Suppl 1:E187-92. https://doi.org/10.1002/mc.22047

 

CASC8 (rs7837328):

Berndt SI et al. Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk. Hum Mol Genet. 2008 Sep 1,17(17):2665-72.  https://doi.org/10.1093/hmg/ddn166

Cui R et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. Gut. 2011 Jun,60(6):799-805.  https://doi.org/10.1136/gut.2010.215947

Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015. 

Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750

Yang B et al. Genetic variants at chromosome 8q24, colorectal epithelial cell proliferation, and risk for incident, sporadic colorectal adenomas. Mol Carcinog. 2014 Feb,53 Suppl 1:E187-92. https://doi.org/10.1002/mc.22047

Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884

 

CASC8 (rs7014346):

Kupfer SS et al. Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology. 2010 Nov,139(5):1677-85, 1685.e1-8. https://doi.org/10.1053/j.gastro.2010.07.038

Li L et al. Association of 8q23-24 region (8q23.3 loci and 8q24.21 loci) with susceptibility to colorectal cancer: a systematic and updated meta-analysis. Int J Clin Exp Med. 2015 Nov 15,8(11):21001-13. eCollection 2015.

Tan C et al. Risk of eighteen genome-wide association study-identified genetic variants for colorectal cancer and colorectal adenoma in Han Chinese. Oncotarget. 2016 Nov 22,7(47):77651-77663. https://doi.org/10.18632/oncotarget.12750

Tenesa A et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008 May,40(5):631-7. https://doi.org/10.1038/ng.133

Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/MD.0000000000001884

 

CCND1 (rs9344):

Grünhage F et al. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis. 2008 Feb,23(2):147-54. Epub 2007 Oct 25. https://doi.org/10.1007/s00384-007-0388-6. 

Le Marchand L et al. Association of the cyclin D1 A870G polymorphism with advanced colorectal cancer. JAMA. 2003 Dec 3,290(21):2843-8.

Porter TR et al. Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene. 2002 Mar 14,21(12):1928-33. https://doi.org/10.1007/s13277-014-2505-9

Probst-Hensch NM et al. The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese Health Study. Carcinogenesis. 2006 Dec,27(12):2475-82. Epub 2006 Jul 8. https://doi.org/10.1093/carcin/bgl116

Qiu H et al. Investigation of cyclin D1 rs9344 G>A polymorphism in colorectal cancer: a meta-analysis involving 13,642 subjects. Onco Targets Ther. 2016 Oct 27,9:6641-6650. eCollection 2016. https://doi.org/10.2147/OTT.S116258

Xu XM et al. CCND1 G870A polymorphism and colorectal cancer risk: An updated meta-analysis. Mol Clin Oncol. 2016 Jun,4(6):1078-1084. Epub 2016 Apr 4. https://doi.org/10.3892/mco.2016.844

Yang J et al. CCND1 G870A polymorphism is associated with increased risk of colorectal cancer, especially for sporadic colorectal cancer and in Caucasians: a meta-analysis. Clin Res Hepatol Gastroenterol. 2012 Apr,36(2):169-77. https://doi.org/10.1016/j.clinre.2011.11.007

Yang Y et al. Cyclin D1 G870A polymorphism contributes to colorectal cancer susceptibility: evidence from a systematic review of 22 case-control studies. PLoS One. 2012,7(5):e36813. https://doi.org/10.1371/journal.pone.0036813

Zahary MN et al. Polymorphisms of cell cycle regulator genes CCND1 G870A and TP53 C215G: Association with colorectal cancer susceptibility risk in a Malaysian population. Oncol Lett. 2015 Nov,10(5):3216-3222. Epub 2015 Sep 18. https://doi.org/10.3892/ol.2015.3728

Zhang LQ et al. Cyclin D1 G870A polymorphism and colorectal cancer susceptibility: a meta-analysis of 20 populations. Int J Colorectal Dis. 2011 Oct,26(10):1249-55. https://doi.org/10.1007/s00384-011-1220-x

Zhang W et al. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics. 2006 Jul,16(7):475-83. https://doi.org/10.1097/01.fpc.0000220562.67595.a5

 

CDH1 (rs16260):

Grünhage F et al. Association of familial colorectal cancer with variants in the E-cadherin (CDH1) and cyclin D1 (CCND1) genes. Int J Colorectal Dis. 2008 Feb,23(2):147-54. Epub 2007 Oct 25. https://doi.org/10.1007/s00384-007-0388-6

Pittman AM et al. The CDH1-160C>A polymorphism is a risk factor for colorectal cancer. Int J Cancer. 2009 Oct 1,125(7):1622-1625. https://doi.org/10.1002/ijc.24542

Wang Y et al. E-cadherin (CDH1) gene promoter polymorphism and the risk of colorectal cancer : a meta-analysis. Int J Colorectal Dis. 2012 Feb,27(2):151-8. https://doi.org/10.1007/s00384-011-1320-7

 

COLCA (rs3802842):

Giráldez MD et al. Susceptibility genetic variants associated with early-onset colorectal cancer. Carcinogenesis. 2012 Mar,33(3):613-9. https://doi.org/10.1093/carcin/bgs009

He J et al. Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):70-81. https://doi.org/10.1158/1055-9965.EPI-10-0892

Li FX et al. Single-nucleotide polymorphism associations for colorectal cancer in southern chinese population. Chin J Cancer Res. 2012 Mar,24(1):29-35. https://doi.org/10.1007/s11670-012-0029-7

Niittymäki I et al. Low-penetrance susceptibility variants in familial colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2010 Jun,19(6):1478-83. https://doi.org/10.1158/1055-9965.EPI-09-1320

Talseth-Palmer BA et al. Colorectal cancer susceptibility loci on chromosome 8q23.3 and 11q23.1 as modifiers for disease expression in Lynch syndrome. J Med Genet. 2011 Apr,48(4):279-84. https://doi.org/10.1136/jmg.2010.079962

Tenesa A et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008 May,40(5):631-7. https://doi.org/10.1038/ng.133

Xiong F et al. Risk of genome-wide association study-identified genetic variants for colorectal cancer in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2010 Jul,19(7):1855-61. https://doi.org/10.1093/carcin/bgt082

 

CYP1A1 (rs1048943):

Gil J et al. CYP1A1 Ile462Val polymorphism and colorectal cancer risk in Polish patients. Med Oncol. 2014 Jul,31(7):72.

Hou L et al. CYP1A1 Val462 and NQO1 Ser187 polymorphisms, cigarette use, and risk for colorectal adenoma. Carcinogenesis. 2005 Jun,26(6):1122-8. Epub 2005 Feb 24. https://doi.org/10.1093/carcin/bgi054

Jin JQ et al. CYP1A1 Ile462Val polymorphism contributes to colorectal cancer risk: a meta-analysis. World J Gastroenterol. 2011 Jan 14,17(2):260-6. https://doi.org/10.3748/wjg.v17.i2.260

Kiss I et al. Colorectal cancer risk in relation to genetic polymorphism of cytochrome P450 1A1, 2E1, and glutathione-S-transferase M1 enzymes. Anticancer Res. 2000 Jan-Feb,20(1B):519-22.

Pande M et al. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol Biomarkers Prev. 2008 Sep,17(9):2393-401. https://doi.org/10.1158/1055-9965.EPI-08-0326

Pereira Serafim PV et al. Relationship between genetic polymorphism of CYP1A1 at codon 462 (Ile462Val) in colorectal cancer. Int J Biol Markers. 2008 Jan-Mar,23(1):18-23. https://doi.org/10.1177/172460080802300103

Xu L et al. Association between CYP1A1 2454A > G polymorphism and colorectal cancer risk: A meta-analysis. J Cancer Res Ther. 2015 Oct Dec,11(4):760-4. https://doi.org/10.4103/0973-1482.160909

Yeh CC et al. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci. 2007 Mar,14(2):183-93. Epub 2006 Dec 27.

Zheng Y et al. Association between CYP1A1 polymorphism and colorectal cancer risk: a meta-analysis. Mol Biol Rep. 2012 Apr,39(4):3533-40. https://doi.org/10.1007/s11033-011-1126-2

Zhu X et al. Associations between CYP1A1 rs1048943 A > G and rs4646903 T > C genetic variations and colorectal cancer risk: Proof from 26 case-control studies. Oncotarget. 2016 Aug 9,7(32):51365-51374. https://doi.org/10.18632/oncotarget.10331

 

DNMT3B (rs1569686):

Bao Q et al. Correlation between polymorphism in the promoter of DNA methyltransferase-3B and the risk of colorectal cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2012 Jan,46(1):53-7.

Bao Q et al. Genetic variation in the promoter of DNMT3B is associated with the risk of colorectal cancer. Int J Colorectal Dis. 2011 Sep,26(9):1107-12. https://doi.org/10.1007/s00384-011-1199-3

Daraei A et al. DNA-methyltransferase 3B 39179 G > T polymorphism and risk of sporadic colorectal cancer in a subset of Iranian population. J Res Med Sci. 2011 Jun,16(6):807-13.

Duan F et al. Systematic evaluation of cancer risk associated with DNMT3B polymorphisms. J Cancer Res Clin Oncol. 2015 Jul,141(7):1205-20. https://doi.org/10.1007/s00432-014-1894-x

Fan H et al. Promoter polymorphisms of DNMT3B and the risk of colorectal cancer in Chinese: a case-control study. J Exp Clin Cancer Res. 2008 Jul 28,27:24. https://doi.org/10.1186/1756-9966-27-24

Guo X et al. Association of the DNMT3B polymorphism with colorectal adenomatous polyps and adenocarcinoma. Mol Biol Rep. 2010 Jan,37(1):219-25. https://doi.org/10.1007/s11033-009-9626-z

Ho V et al. Genetic and epigenetic variation in the DNMT3B and MTHFR genes and colorectal adenoma risk. Environ Mol Mutagen. 2016 May,57(4):261-8. https://doi.org/10.1002/em.22010

Hong YS et al. DNMT3b 39179GT polymorphism and the risk of adenocarcinoma of the colon in Koreans. Biochem Genet. 2007 Apr,45(3-4):155-63. Epub 2007 Feb 23. https://doi.org/10.1007/s10528-006-9047-9

Khoram-Abadi KM et al. DNMT3B -149 C>T and -579 G>T Polymorphisms and Risk of Gastric and Colorectal Cancer: a Meta-analysis. Asian Pac J Cancer Prev. 2016,17(6):3015-20. 

Zhang Y et al. Association of DNMT3B -283 T > C and -579 G > T polymorphisms with decreased cancer risk: evidence from a meta-analysis. Int J Clin Exp Med. 2015 Aug 15,8(8):13028-38. eCollection 2015.

Zhu S et al. DNMT3B polymorphisms and cancer risk: a meta analysis of 24 case-control studies. Mol Biol Rep. 2012 Apr,39(4):4429-37.

 

GREM1 (rs10318):

Kupfer SS et al. Genetic heterogeneity in colorectal cancer associations between African and European americans. Gastroenterology. 2010 Nov,139(5):1677-85, 1685.e1-8. https://doi.org/10.1053/j.gastro.2010.07.038

Kupfer SS et al. Shared and independent colorectal cancer risk alleles in TGFβ-related genes in African and European Americans. Carcinogenesis. 2014 Sep,35(9):2025-30. https://doi.org/10.1093/carcin/bgu088

Tu L et al. Common genetic variants (rs4779584 and rs10318) at 15q13.3 contributes to colorectal adenoma and colorectal cancer susceptibility: evidence based on 22 studies. Mol Genet Genomics. 2015 Jun,290(3):901-12. https://doi.org/10.1007/s00438-014-0970-x

 

IL8 (rs4073):

Bondurant KL et al. Interleukin genes and associations with colon and rectal cancer risk and overall survival. Int J Cancer. 2013 Feb 15,132(4):905-15. https://doi.org/10.1002/ijc.27660

Gunter MJ et al. Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2006 Jun,15(6):1126-31. . https://doi.org/10.1158/1055-9965.EPI-06-0042

Küry S et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer. 2008 Nov 7,8:326. https://doi.org/10.1186/1471-2407-8-326

Walczak A et al. The lL-8 and IL-13 gene polymorphisms in inflammatory bowel disease and colorectal cancer. DNA Cell Biol. 2012 Aug,31(8):1431-8. https://doi.org/10.1089/dna.2012.1692

 

IL10 (rs1800872):

Cacev T et al. Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis. 2008 Aug,29(8):1572-80. https://doi.org/10.1093/carcin/bgn164

Cai J et al. An Analysis of IL-10/IL-10R Genetic Factors Related to Risk of Colon Cancer and Inflammatory Bowel Disease in a Han Chinese Population. Clin Lab. 2016,62(6):1147-54. https://doi.org/10.7754/clin.lab.2015.151120

Shi YH et al. The association of three promoter polymorphisms in interleukin-10 gene with the risk for colorectal cancer and hepatocellular carcinoma: A meta-analysis. Sci Rep. 2016 Aug 4,6:30809. https://doi.org/10.1038/srep30809

Yu Y et al. Polymorphisms of inflammation-related genes and colorectal cancer risk: a population-based case-control study in China. Int J Immunogenet. 2014 Aug,41(4):289-97. https://doi.org/10.1111/iji.12119

Zhang YM et al. Meta-analysis of epidemiological studies of association of two polymorphisms in the interleukin-10 gene promoter and colorectal cancer risk. Genet Mol Res. 2012 Sep 25,11(3):3389-97. https://doi.org/10.4238/2012.September.25.7

 

MTHFR (rs1801133):

Delgado-Plasencia L et al. Impact of the MTHFR C677T polymorphism on colorectal cancer in a population with low genetic variability. Int J Colorectal Dis. 2013 Sep,28(9):1187-93.

Fernández-Peralta AM et al. Association of polymorphisms MTHFR C677T and A1298C with risk of colorectal cancer, genetic and epigenetic characteristic of tumors, and response to chemotherapy. Int J Colorectal Dis. 2010 Feb,25(2):141-51.

Gallegos-Arreola MP et al. Association of the 677C –>T polymorphism in the MTHFR gene with colorectal cancer in Mexican patients. Cancer Genomics Proteomics. 2009 May-Jun,6(3):183-8.

Guo XP et al. Association of MTHFR C677T polymorphisms and colorectal cancer risk in Asians: evidence of 12,255 subjects. Clin Transl Oncol. 2014 Jul,16(7):623-9. https://doi.org/10.1007/s12094-013-1126-x

Huang Y et al. Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet. 2007,52(1):73-85. Epub 2006 Nov 7. https://doi.org/10.1007/s10038-006-0082-5

Hubner RA et al. MTHFR C677T and colorectal cancer risk: A meta-analysis of 25 populations. Int J Cancer. 2007 Mar 1,120(5):1027-35. https://doi.org/10.1002/ijc.22440

Jiang Q et al. Diets, polymorphisms of methylenetetrahydrofolate reductase, and the susceptibility of colon cancer and rectal cancer. Cancer Detect Prev. 2005,29(2):146-54. https://doi.org/10.1016/j.cdp.2004.11.004

Kim J et al. Dietary intake of folate and alcohol, MTHFR C677T polymorphism, and colorectal cancer risk in Korea. Am J Clin Nutr. 2012 Feb,95(2):405-12. https://doi.org/10.3945/ajcn.111.020255 

Koushik A et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006 Dec,15(12):2408-17. https://doi.org/10.1158/1055-9965.EPI-06-0624

Le Marchand L et al. The MTHFR C677T polymorphism and colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2005 May,14(5):1198-203. https://doi.org/10.1158/1055-9965.EPI-04-0840

Li H et al. Methylenetetrahydrofolate reductase genotypes and haplotypes associated with susceptibility to colorectal cancer in an eastern Chinese Han population. Genet Mol Res. 2011 Dec 14,10(4):3738-46. https://doi.org/10.4238/2011.December.14.8

Miao XP et al. Association between genetic variations in methylenetetrahydrofolate reductase and risk of colorectal cancer in a Chinese population. Zhonghua Yu Fang Yi Xue Za Zhi. 2005 Nov,39(6):409-11. 

Pardini B et al. MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res. 2011 Mar 18,721(1):74-80. https://doi.org/10.1016/j.mrgentox.2010.12.008

Shiao SP et al. Meta-Prediction of MTHFR Gene Polymorphism Mutations and Associated Risk for Colorectal Cancer. Biol Res Nurs. 2016 Jul,18(4):357-69. https://doi.org/10.1177/1099800415628054

Sheng X et al. MTHFR C677T polymorphism contributes to colorectal cancer susceptibility: evidence from 61 case-control studies. Mol Biol Rep. 2012 Oct,39(10):9669-79. https://doi.org/10.1007/s11033-012-1832-4

Teng Z et al. The 677C>T (rs1801133) polymorphism in the MTHFR gene contributes to colorectal cancer risk: a meta-analysis based on 71 research studies. PLoS One. 2013,8(2):e55332. https://doi.org/10.1371/journal.pone.0055332 

Ulvik A et al. Colorectal cancer and the methylenetetrahydrofolate reductase 677C -> T and methionine synthase 2756A -> G polymorphisms: a study of 2,168 case-control pairs from the JANUS cohort. Cancer Epidemiol Biomarkers Prev. 2004 Dec,13(12):2175-80.

Xie SZ et al. Association between the MTHFR C677T polymorphism and risk of cancer: evidence from 446 case-control studies. Tumour Biol. 2015 Nov,36(11):8953-72. https://doi.org/10.1007/s13277-015-3648-z

Yang Z et al. MTHFR C677T polymorphism and colorectal cancer risk in Asians, a meta-analysis of 21 studies. Asian Pac J Cancer Prev. 2012,13(4):1203-8. https://doi.org/10.7314/apjcp.2012.13.4.1203

Yin G et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 2004 Nov,95(11):908-13. https://doi.org/10.1111/j.1349-7006.2004.tb02201.x

Yousef AM et al. Allele and genotype frequencies of the polymorphic methylenetetrahydrofolate reductase and colorectal cancer among Jordanian population. Asian Pac J Cancer Prev. 2013,14(8):4559-65. https://doi.org/10.7314/apjcp.2013.14.8.4559

Zhao Met al. Association of methylenetetrahydrofolate reductase C677T and A1298C polymorphisms with colorectal cancer risk: A meta-analysis. Biomed Rep. 2013 Sep,1(5):781-791. Epub 2013 Jul 15. https://doi.org/10.3892/br.2013.134

Zhou D et al. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012,8(6):819-30. https://doi.org/10.7150/ijbs.4462

Zhong S et al. Quantitative assessment of the association between MTHFR C677T polymorphism and colorectal cancer risk in East Asians. Tumour Biol. 2012 Dec,33(6):2041-51. https://doi.org/10.1007/s13277-012-0463-7

 

MTRR (rs1801394):

Guimarães JL et al. Gene polymorphisms involved in folate and methionine metabolism and increased risk of sporadic colorectal adenocarcinoma. Tumour Biol. 2011 Oct,32(5):853-61. https://doi.org/10.1007/s13277-011-0185-2

Han D et al. Methionine synthase reductase A66G polymorphism contributes to tumor susceptibility: evidence from 35 case-control studies. Mol Biol Rep. 2012 Feb,39(2):805-16 https://doi.org/10.1007/s11033-011-0802-6

Matsuo K et al. Methionine Synthase Reductase Gene A66G Polymorphism is Associated with Risk of Colorectal Cancer. Asian Pac J Cancer Prev. 2002,3(4):353-359. 

Pardini B et al. MTHFR and MTRR genotype and haplotype analysis and colorectal cancer susceptibility in a case-control study from the Czech Republic. Mutat Res. 2011 Mar 18,721(1):74-80. https://doi.org/10.1016/j.mrgentox.2010.12.008

Wu PP et al. A meta-analysis of MTRR A66G polymorphism and colorectal cancer susceptibility. J BUON. 2015 May-Jun,20(3):918-22. 

Zhou D et al. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer. Int J Biol Sci. 2012,8(6):819-30.

 

SMAD7 (rs12953717):

Ho JW et al. Replication study of SNP associations for colorectal cancer in Hong Kong Chinese. Br J Cancer. 2011 Jan 18,104(2):369-75. https://doi.org/10.1038/sj.bjc.6605977

Jiang X et al. Genetic variations in SMAD7 are associated with colorectal cancer risk in the colon cancer family registry. PLoS One. 2013,8(4):e60464. https://doi.org/10.1371/journal.pone.0060464

Li X et al. A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol Biol Rep. 2011 Nov,38(8):5093-7. https://doi.org/10.1007/s11033-010-0656-3

Thompson CL et al. Association of common genetic variants in SMAD7 and risk of colon cancer. Carcinogenesis. 2009 Jun,30(6):982-6. https://doi.org/10.1093/carcin/bgp086

Yao K et al. Correlation Between CASC8, SMAD7 Polymorphisms and the Susceptibility to Colorectal Cancer: An Updated Meta-Analysis Based on GWAS Results. Medicine (Baltimore). 2015 Nov,94(46):e1884. https://doi.org/10.1097/md.0000000000001884

 

TGFB1 (rs1800469):

Amirghofran Z et al. Genetic polymorphism in the transforming growth factor beta1 gene (-509 C/T and -800 G/A) and colorectal cancer. Cancer Genet Cytogenet. 2009 Apr 1,190(1):21-5. https://doi.org/10.1016/j.cancergencyto.2008.11.010

Chung SJ et al. Transforming growth factor-[beta]1 -509T reduces risk of colorectal cancer, but not adenoma in Koreans. Cancer Sci. 2007 Mar,98(3):401-4. https://doi.org/10.1007/s12032-009-9383-9

Fang F et al. TGFB1 509 C/T polymorphism and colorectal cancer risk: a meta-analysis. Med Oncol. 2010 Dec,27(4):1324-8. https://doi.org/10.1007/s12032-009-9383-9

Liu Y et al. Meta-analyses of the associations between four common TGF-β1 genetic polymorphisms and risk of colorectal tumor. Tumour Biol. 2012 Aug,33(4):1191-9. https://doi.org/10.1007/s13277-012-0364-9 

Slattery ML et al. Genetic variation in the TGF-β signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2011 Jan,20(1):57-69. 

Wang Y et al. An updated meta-analysis on the association of TGF-β1 gene promoter -509C/T polymorphism with colorectal cancer risk. Cytokine. 2013 Jan,61(1):181-7. https://doi.org/10.1016/j.cyto.2012.09.014

Zhang Y et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in China. Cancer Lett. 2009 Mar 8,275(1):102-8. https://doi.org/10.1016/j.canlet.2008.10.017


TCF7L2 (rs7903146):

Bodhini et al. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism. 2007 Sep,56(9):1174-8. https://doi.org/10.1016/j.metabol.2007.04.012

Cauchi et al. TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep. 2008 Apr,8(2):149-55. https://doi.org/10.1007/s11892-008-0026-x

Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119

Lyssenko et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. Aug 1, 2007, 117(8): 2155–2163. https://doi.org/10.1172/JCI30706

 

HIGD1C (rs12304921):

Prasad RB et al. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015 Mar 12,6(1):87-123. https://doi.org/10.3390/genes6010087

Ryoo H et al. Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur J Hum Genet. 2011 Jun,19(6):672-5. https://doi.org/10.1038/ejhg.2011.6

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78. https://doi.org/10.1038/nature05911

 

HHEX (rs1111875):

Furukawa et al. Polymorphisms in the IDE-KIF11-HHEX gene locus are reproducibly associated with type 2 diabetes in a Japanese population. J Clin Endocrinol Metab. 2008 Jan,93(1):310-4. https://doi.org/10.1210/jc.2007-1029

Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119

Omori et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008 Mar,57(3):791-5. Epub 2007 Dec 27. https://doi.org/10.2337/db07-0979

van Vliet-Ostaptchouk et al. HHEX gene polymorphisms are associated with type 2 diabetes in the Dutch Breda cohort. Eur J Hum Genet. 2008 May,16(5):652-6. https://doi.org/10.1038/sj.ejhg.5202008

 

IL6 (rs1800795):

Fishman et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest. 1998 Oct 1,102(7):1369-76. https://doi.org/10.1172/JCI2629

Huth et al. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants‘ data from 21 studies. Diabetes. 2006 Oct,55(10):2915-21. https://doi.org/10.2337/db06-0600

Illig et al. Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. J Clin Endocrinol Metab. 2004 Oct,89(10):5053-8. https://doi.org/10.1210/jc.2004-0355

 

IL10 (rs1800872):

Bai et al. Association between interleukin 10 gene polymorphisms and risk of type 2 diabetes mellitus in a Chinese population. J Int Med Res. 2014 Apr 23. https://doi.org/10.1177/0300060513505813

Saxena M et al. An interleukin-10 gene promoter polymorphism (-592A/C) associated with type 2 diabetes: a North Indian study. Biochem Genet. 2012 Aug,50(7-8):549-59. https://doi.org/10.1007/s10528-012-9499-z

Scarpelli et al. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian italian subjects. Diabetes. 2006 May,55(5):1529-33. https://doi.org/10.2337/db06-0047

Tarabay M et al. African vs. Caucasian and Asian difference for the association of interleukin-10 promotor polymorphisms with type 2 diabetes mellitus (a meta-analysis study). Meta Gene. 2016 Mar 4,9:10-7. https://doi.org/10.1016/j.mgene.2016.02.006

 

PPARG (rs1801282):

Altshuler et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000 Sep,26(1):76-80. https://doi.org/10.1038/79216

Deeb et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov,20(3):284-7. https://doi.org/10.1038/3099

Gouda et al. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010 Mar 15,171(6):645-55. https://doi.org/10.1093/aje/kwp450

Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119

 

FTO (rs9939609):

Frayling et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science. May 11, 2007, 316(5826): 889–894. https://doi.org/10.1126/science.1141634

Hertel et al. Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1,858 control participants from a Norwegian population-based cohort (the HUNT study). Diabetologia. 2008 Jun,51(6):971-7. https://doi.org/10.1007/s00125-008-0982-3

Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78. 

 

KCNJ11 (rs5219):

Florez et al. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes. 2004 May,53(5):1360-8. https://doi.org/10.2337/diabetes.53.5.1360

Florez et al. Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program. Diabetes. Feb 2007, 56(2): 531–536. https://doi.org/10.2337/db06-0966

Hivert MF et al. Updated genetic score based on 34 confirmed type 2 diabetes Loci is associated with diabetes incidence and regression to normoglycemia in the diabetes prevention program. Diabetes. 2011,60(4):1340-8. https://doi.org/10.2337/db10-1119

Omori et al. Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes. 2008 Mar,57(3):791-5. Epub 2007 Dec 27.  https://doi.org/10.2337/db07-0979

Zhou et al. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J Hum Genet. 2009 Jul,54(7):433-5. https://doi.org/10.1038/jhg.2009.54

 

NOS1AP (rs10494366):

Becker et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet Genomics. 2008 Jul,18(7):591-7. https://doi.org/10.1097/FPC.0b013e328300e8c5

Tomás M et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. JACC. 2010 Jun 15,55(24):2745-52. https://doi.org/10.1016/j.jacc.2009.12.065

Treuer AV et al. NOS1AP modulates intracellular Ca(2+) in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy. Int J Physiol Pathophysiol Pharmacol. 2014 Mar 13,6(1):37-46. eCollection 2014. 

CDH13 (rs8055236):

Linnea M. Baudhuin. Genetics of coronary artery disease: focus on genome-wide association studies. Am J Transl Res. 2009, 1(3): 221–234. 

The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. https://doi.org/10.1038/nature05911

Yan Y et al. Evaluation of population impact of candidate polymorphisms for coronary heart disease in the Framingham Heart Study Offspring Cohort. BMC Proc. 2009 Dec 15,3 Suppl 7:S118. https://doi.org/10.1186/1753-6561-3-s7-s118

 

CHDS8 (rs1333049):

Bilguvar K. et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet. 2008 Dec,40(12):1472-7. https://doi.org/10.1038/ng.240

Burton PR. et all. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007 Jun 7,447(7145):661-78. https://doi.org/10.1038/nature05911

Helgadottir A. et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008 Feb,40(2):217-24. https://doi.org/10.1038/ng.72

Helgadottir A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007 Jun 8,316(5830):1491-3. https://doi.org/10.1126/science.1142842

Karvanen J. et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet Epidemiol. 2009 Apr,33(3):237-46. https://doi.org/10.1002/gepi.20374

 

APOA5 (rs662799):

Aberle J. et al. A polymorphism in the apolipoprotein A5 gene is associated with weight loss after short-term diet. Clin Genet. 2005 Aug,68(2):152-4. https://doi.org/10.1111/j.1399-0004.2005.00463.x

Aouizerat B. E. et al. Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. J Lipid Res. 2003 Jun,44(6):1167-73. https://doi.org/10.1194/jlr.M200480-JLR200

Dorfmeister B. et al. The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochim Biophys Acta. 2007 Mar,1772(3):355-63. https://doi.org/10.1016/j.bbadis.2006.11.008

 

PON1 (rs662):

Ahmad I et al. Two- and three-locus haplotypes of the paraoxonase (PON1) gene are associated with coronary artery disease in Asian Indians. Gene. 2012 Sep 10,506(1):242-7. https://doi.org/10.1016/j.gene.2012.06.031

Agrawal S et al. Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J Med Sci. 2009 Aug,63(8):335-44. 

Baum et al. Paraoxonase 1 gene Q192R polymorphism affects stroke and myocardial infarction risk. Clinical biochemistry. https://doi.org/10.1016/j.clinbiochem.2006.01.010

Chen, Q., Reis, S. E., Kammerer, C. M., McNamara, D. M., Holubkov, R., Sharaf, B. L., Sopko, G., Pauly, D. F., Merz, C. N., Kamboh, M. I., & WISE Study Group (2003). Association between the severity of angiographic coronary artery disease and paraoxonase gene polymorphisms in the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. American journal of human genetics, 72(1), 13–22. https://doi.org/10.1086/345312

Hassan et al. The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects. Mol Cell Biochem. 2013 Aug,380(1-2):121-8. https://doi.org/10.1007/s11010-013-1665-z

Imai Y et al. Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis. 2000 Apr,149(2):435-42. https://doi.org/10.1016/s0021-9150(99)00340-8

Kallel A et al. The paraoxonase L55M and Q192R gene polymorphisms and myocardial infarction in a Tunisian population. Clin Biochem. 2010 Dec,43(18):1461-3. https://doi.org/10.1016/j.clinbiochem.2010.08.029

Vaisi-Raygani, A., Ghaneialvar, H., Rahimi, Z., Tavilani, H., Pourmotabbed, T., Shakiba, E., Vaisi-Raygani, A., Kiani, A., Aminian, M., Alibakhshi, R., & Bartels, C. (2011). Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease. Molecular biology reports, 38(8), 5421–5428. https://doi.org/10.1007/s11033-011-0696-3

 

PON1 (rs854560):

Agrawal S et al. Paraoxonase 1 gene polymorphisms contribute to coronary artery disease risk among north Indians. Indian J Med Sci. 2009 Aug,63(8):335-44. 

Oliveira SA et al. PON1 M/L55 mutation protects high-risk patients against coronary artery disease. Int J Cardiol. 2004 Mar,94(1):73-7. https://doi.org/10.1016/j.ijcard.2003.05.011

Ozkök E et al. Combined impact of matrix metalloproteinase-3 and paraoxonase 1 55/192 gene variants on coronary artery disease in Turkish patients. Med Sci Monit. 2008 Oct,14(10):CR536-42. https://doi.org/10.1016/j.ijcard.2003.05.011

Rios DL et al. Paraoxonase 1 gene polymorphisms in angiographically assessed coronary artery disease: evidence for gender interaction among Brazilians. Clin Chem Lab Med. 2007,45(7):874-8. https://doi.org/10.1515/CCLM.2007.136

Watzinger N et al. Human paraoxonase 1 gene polymorphisms and the risk of coronary heart disease: a community-based study. Cardiology. 2002,98(3):116-22. https://doi.org/10.1159/000066321

 

APOB (rs5742904):

Castillo et al. The apolipoprotein B R3500Q gene mutation in Spanish subjects with a clinical diagnosis of familial hypercholesterolemia. Atherosclerosis. 2002 Nov,165(1):127-35. https://doi.org/10.1016/s0021-9150(02)00190-9

Haiqing et al. Familial Defective Apolipoprotein B-100 and Increased Low-Density Lipoprotein Cholesterol and Coronary Artery Calcification in the Old Order Amish. Arch Intern Med. Nov 8, 2010, 170(20): 1850–1855. https://doi.org/10.1001/archinternmed.2010.384

Meriño-Ibarra et al. Screening of APOB gene mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum Biol. 2005 Oct,77(5):663-73. 

Real et al. Influence of LDL receptor gene mutations and the R3500Q mutation of the apoB gene on lipoprotein phenotype of familial hypercholesterolemic patients from a South European population. Eur J Hum Genet. 2003 Dec,11(12):959-65. https://doi.org/10.1038/sj.ejhg.5201079

 

NOS3 (Ins/Del Int. 4):

Casas et al. Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation. 2004 Mar 23,109(11):1359-65. https://doi.org/10.1161/01.CIR.0000121357.76910.A3

Rodríguez-Esparragón FJ et al. Peroxisome proliferator-activated receptor-gamma2-Pro12Ala and endothelial nitric oxide synthase-4a/bgene polymorphisms are associated with essential hypertension. J Hypertens. 2003 Sep,21(9):1649-55. https://doi.org/10.1097/01.hjh.0000084719.53355.20

Salimi S et al. Endothelial nitric oxide synthase gene intron4 VNTR polymorphism in patients with coronary artery disease in Iran. Indian J Med Res. 2006 Dec,124(6):683-8. 

 

NOS3 (rs2070744):

Lee CR et al. NOS3 polymorphisms, cigarette smoking, and cardiovascular disease risk: the Atherosclerosis Risk in Communities study. Pharmacogenet Genomics. 2006 Dec,16(12):891-9. https://doi.org/10.1097/01.fpc.0000236324.96056.16

Rossi et al. The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol. 2006 Sep 19,48(6):1166-74. https://doi.org/10.1016/j.jacc.2006.05.046

Tangurek B et al. The relationship between endothelial nitric oxide synthase gene polymorphism (T-786 C) and coronary artery disease in the Turkish population. Heart Vessels. 2006 Sep,21(5):285-90. Epub 2006 Sep 29. https://doi.org/10.1007/s00380-005-0902-0

 

NOS3 (rs1799983):

Abdel-Aziz et al. Association of endothelial nitric oxide synthase gene polymorphisms with classical risk factors in development of premature coronary artery disease. Mol Biol Rep. 2013 Apr,40(4):3065-71. https://doi.org/10.1007/s11033-012-2380-7

Colombo MG et al. Evidence for association of a common variant of the endothelial nitric oxide synthase gene (Glu298–>Asp polymorphism) to the presence, extent, and severity of coronary artery disease. Heart. 2002 Jun,87(6):525-8. https://doi.org/10.1136/heart.87.6.525

Salimi S et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism in patients with coronary artery disease. Ann Saudi Med. 2010 Jan Feb,30(1):33-7. https://doi.org/10.4103/0256-4947.59370

Zhang et al. The G894T polymorphism on endothelial nitric oxide synthase gene is associated with increased coronary heart disease among Asia population: evidence from a Meta analysis. Thromb Res. 2012 Aug,130(2):192-7. https://doi.org/10.1016/j.thromres.2012.02.015

 

APOA1 (rs670):

Angotti E et al. A polymorphism (G–>A transition) in the -78 position of the apolipoprotein A-I promoter increases transcription efficiency. J Biol Chem. 1994 Jul 1,269(26):17371-4. 

Juo SH et al. Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta analysis. Am J Med Genet. 1999 Jan 29,82(3):235-41.

Mata P et al. Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation. Atherosclerosis. 1998 Apr,137(2):367-76.

Miles RR et al. Genome-wide screen for modulation of hepatic apolipoprotein A-I (ApoA-I) secretion. J Biol Chem. 2013 Mar 1,288(9):6386-96. https://doi.org/10.1074/jbc.M112.410092

Ordovas JM. et al. Polyunsaturated fatty acids modulate the effects of the APOA1 G-A polymorphism on HDL-cholesterol concentrations in a sex specific manner: the Framingham Study. Am J Clin Nutr. 2002 Jan,75(1):38-46. 

Ordovas JM et al. Gene-diet interaction and plasma lipid responses to dietary intervention. Biochem Soc Trans. 2002 Apr,30(2):68-73.

Ruano G et al. Apolipoprotein A1 genotype affects the change in high density lipoprotein cholesterol subfractions with exercise training. Atherosclerosis. 2006 Mar,185(1):65-9. Epub 2005 Jul 7. https://doi.org/10.1016/j.atherosclerosis.2005.05.029

Rudkowska I et al. Gene-diet interactions on plasma lipid levels in the Inuit population. Br J Nutr. 2013 Mar 14,109(5):953-61. https://doi.org/10.1017/S0007114512002231

 

MTRR (rs1801394):

Cai et al. Genetic variant in MTRR, but not MTR, is associated with risk of congenital heart disease: an integrated meta-analysis. PLoS One. 2014 Mar 4,9(3):e89609. https://doi.org/10.1371/journal.pone.0089609

Olteanu et al. Differences in the efficiency of reductive activation of methionine synthase and exogenous electron acceptors between the common polymorphic variants of human methionine synthase reductase. Biochemistry. 2002 Nov 12,41(45):13378-85. https://doi.org/10.1021/bi020536s

van Beynum IM et al. MTRR 66A>G polymorphism in relation to congenital heart defects. Clin Chem Lab Med. 2006,44(11):1317-23. https://doi.org/10.1515/CCLM.2006.254

Yu D et al. Association between methionine synthase reductase A66G polymorphism and the risk of congenital heart defects: evidence from eight case-control studies. Pediatr Cardiol. 2014 Oct,35(7):1091-8. https://doi.org/10.1007/s00246-014-0948-9 

Zeng W et al. A66G and C524T polymorphisms of the methionine synthase reductase gene are associated with congenital heart defects in the Chinese Han population. Genet Mol Res. 2011 Oct 25,10(4):2597-605. 

 

GJA4 (rs1764391):

Guo SX et al. Association between C1019T polymorphism of the connexin37 gene and coronary heart disease in patients with in-stent restenosis. Exp Ther Med. 2013 Feb,5(2):539-544. Epub 2012 Dec 5. https://doi.org/10.3892/etm.2012.852

Han Y et al. Association of connexin 37 gene polymorphisms with risk of coronary artery disease in northern Han Chinese. Cardiology. 2008,110(4):260-5. Epub 2007 Dec 12. https://doi.org/10.1159/000112410

Su-Xia Guo et al. Association between C1019T polymorphism of the connexin37 gene and coronary heart disease in patients with in-stent restenosis. Exp Ther Med. 2013 Feb, 5(2): 539–544. 

Wen D et al. Association of Connexin37 C1019T with myocardial infarction and coronary artery disease: a meta-analysis. Exp Gerontol. 2014 Oct,58:203-7. https://doi.org/10.1016/j.exger.2014.06.011

Ye H et al. Genetic associations with coronary heart disease: meta-analyses of 12 candidate genetic variants. Gene. 2013 Nov 15,531(1):71-7. doi: 10.1016/j.gene.2013.07.029. Epub 2013 Jul 29. https://doi.org/10.1016/j.gene.2013.07.029

 

ITGB3 (rs5918):

Erdman V et al. OS 08-03 PHARMACOGENETIC MARKERS OF SURVIVAL. J Hypertens. 2016 Sep,34 Suppl 1 – ISH 2016 Abstract Book:e68. 

Goodman T et al. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008 Aug,66(2):222-32. https://doi.org/10.1111/j.1365-2125.2008.03183.x

Undas et al. Pl(A2) polymorphism of beta(3) integrins is associated with enhanced thrombin generation and impaired antithrombotic action of aspirin at the site of microvascular injury. Circulation. 2001 Nov 27,104(22):2666-72. https://doi.org/10.1161/hc4701.099787

Weiss, E. J., Bray, P. F., Tayback, M., Schulman, S. P., Kickler, T. S., Becker, L. C., Weiss, J. L., Gerstenblith, G., & Goldschmidt-Clermont, P. J. (1996). A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. The New England journal of medicine, 334(17), 1090–1094. https://doi.org/10.1056/NEJM199604253341703

 

CETP (rs708272):

Agirbasli et al. Multi-locus candidate gene analyses of lipid levels in a pediatric Turkish cohort: lessons learned on LPL, CETP, LIPC, ABCA1, and SHBG. OMICS. 2013 Dec,17(12):636-45. https://doi.org/10.1089/omi.2013.0066

Radovica et al. The association of common SNPs and haplotypes in CETP gene with HDL cholesterol levels in Latvian population. PLoS One. 2013 May 13,8(5):e64191. https://doi.org/10.1371/journal.pone.0064191

Wang et al. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis. 2013 Nov 27,12:176. https://doi.org/10.1186/1476-511X-12-176

 

MTHFR (rs1801133):

Ashfield-Watt P.A. et al. Methylenetetrahydrofolate reductase 677C–>T genotype modulates homocysteine responses to a folate-rich diet or a low dose folic acid supplement: a randomized controlled trial. Am J Clin Nutr. 2002 Jul,76(1):180-6. https://doi.org/10.1093/ajcn/76.1.180

Bønaa K.H. et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006 Apr 13,354(15):1578-88. https://doi.org/10.1056/NEJMoa055227

Hustad et al. Riboflavin and Methylenetetrahydrofolate Reductase. Madame Curie Bioscience Database. https://www.ncbi.nlm.nih.gov/books/NBK6145/

Jacques PF et al. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene. J Nutr. 2002,132(2):283-288. https://doi.org/10.1093/jn/132.2.283

Lewis S. J. et al. Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ. 2005 Nov 5,331(7524):1053. https://doi.org/10.1136/bmj.38611.658947.55

Ventura P et al. Hyperhomocysteinemia and MTHFR C677T polymorphism in patients with portal vein thrombosis complicating liver cirrhosis. Thromb Res. 2016 May,141:189-95.

 

MMP3 (rs3025058):

Abilleira et al. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet. 2006 Dec,43(12):897-901. Epub 2006 Aug 11. https://doi.org/10.1136/jmg.2006.040808 

Wang J et al. Polymorphisms of matrix metalloproteinases in myocardial infarction: a meta-analysis. Heart. 2011 Oct,97(19):1542-6. doi: 10.1136/heartjnl-2011-300342. 

Zee et al. Genetic risk factors in recurrent venous thromboembolism: A multilocus, population-based, prospective approach. Clin Chim Acta. 2009 Apr,402(1-2):189-92. https://doi.org/10.1016/j.cca.2009.01.011

 

NOS1AP (rs16847548):

Arking et al. Multiple independent genetic factors at NOS1AP modulate the QT interval in a multi-ethnic population. PLoS One. 2009,4(1):e4333. https://doi.org/10.1371/journal.pone.0004333

Crotti et al.NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 2009 Oct 27,120(17):1657-63. https://doi.org/10.1161/CIRCULATIONAHA.109.879643

Kao et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009 Feb 24,119(7):940-51. https://doi.org/10.1161/CIRCULATIONAHA.108.791723

 

NOS1AP (rs12567209):

Eijgelsheim et al. Genetic variation in NOS1AP is associated with sudden cardiac death: evidence from the Rotterdam Study. Hum Mol Genet. Nov 1, 2009, 18(21): 4213–4218. https://doi.org/10.1093/hmg/ddp356

Kao et al. Genetic variations in nitric oxide synthase 1 adaptor protein are associated with sudden cardiac death in US white community-based populations. Circulation. 2009 Feb 24,119(7):940-51. https://doi.org/10.1161/CIRCULATIONAHA.108.791723

Liu et al. A common NOS1AP genetic polymorphism, rs12567209 G>A, is associated with sudden cardiac death in patients with chronic heart failure in the Chinese Han population. J Card Fail. 2014 Apr,20(4):244-51.  https://doi.org/10.1016/j.cardfail.2014.01.006

 

NOS1AP (rs10494366):

Aarnoudse et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation. 2007 Jul 3. https://doi.org/10.1161/CIRCULATIONAHA.106.676783

Arking et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet. 2006 Jun,38(6):644-51. https://doi.org/10.1038/ng1790

Marjamaa et al. Common candidate gene variants are associated with QT interval duration in the general population. J Intern Med. 2009 Apr,265(4):448-58. https://doi.org/10.1111/j.1365-2796.2008.02026.x

 

SREBF2 (rs2228314):

Fan et al. Expression of sterol regulatory element-binding transcription factor (SREBF) 2 and SREBF cleavage-activating protein (SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Published online Dec 30, 2008. https://doi.org/10.1186/1477-9560-6-17

Mohammad Abdullah et al. The impact of dairy consumption on circulating cholesterol levels is modulated by common single nucleotide polymorphisms in cholesterol synthesis- and transport-related genes. Fasebj, Published Online: 1 Apr 2014 Abstract Number: 1038.4. https://doi.org/10.1096/fasebj.28.1_supplement.1038.4

Wang Y et al. Relationship of SREBP-2 rs2228314 G>C polymorphism with nonalcoholic fatty liver disease in a Han Chinese population. Genet Test Mol Biomarkers. 2014 Sep,18(9):653-7. https://doi.org/10.1089/gtmb.2014.0116

 

CYP1A2 (rs762551):

Bågeman, E., Ingvar, C., Rose, C., & Jernström, H. (2008). Coffee consumption and CYP1A2*1F genotype modify age at breast cancer diagnosis and estrogen receptor status. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(4), 895–901. https://doi.org/10.1158/1055-9965.EPI-07-0555

„Caffeine“. DrugBank. University of Alberta. 16 September 2013. Retrieved 8 August 2014.

Sachse C et al. Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999 Apr,47(4):445-9. https://doi.org/10.1046/j.1365-2125.1999.00898.x

 

APOE (E2/E3/E4):

Bennet AM et al. Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 2007 Sep 19, 298(11):1300-11. https://doi.org/10.1001/jama.298.11.1300

Dammerman, M., & Breslow, J. L. (1995). Genetic basis of lipoprotein disorders. Circulation, 91(2), 505–512. https://doi.org/10.1161/01.cir.91.2.505

Burman D et al. Relationship of the ApoE polymorphism to plasma lipid traits among South Asians, Chinese, and Europeans living in Canada. Atherosclerosis. 2009 Mar,203(1):192-200. https://doi.org/10.1016/j.atherosclerosis.2008.06.007

Dallongeville et al. Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res. 1992 Apr,33(4):447-54. 

Muendlein A et al. Synergistic effects of the apolipoprotein E epsilon3/epsilon2/epsilon4, the cholesteryl ester transfer protein TaqIB, and the apolipoprotein C3 -482 C>T polymorphisms on their association with coronary artery disease. Atherosclerosis. 2008 Jul,199(1):179-86. https://doi.org/10.1016/j.atherosclerosis.2007.10.030

Roberto Elosua et al. Association of APOE genotype with carotid atherosclerosis in men and women the Framingham Heart Study. October 2004 The Journal of Lipid Research, 45, 1868-1875. https://doi.org/10.1194/jlr.M400114-JLR200

 

CYP1A1 (rs4646903):

Hussein AG et al. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene. 2014 May 10,541(1):26-30. https://doi.org/10.1016/j.gene.2014.03.003

Islam MS et al. Epub 2012 Nov 21. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013 Feb 1,416:11-9. https://doi.org/10.1016/j.cca.2012.11.011

Jiang XY et al. Susceptibility of lung cancer with polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 genotypes in the population of Inner Mongolia region. Asian Pac J Cancer Prev. 2014,15(13):5207-14. https://doi.org/10.7314/apjcp.2014.15.13.5207

Kiyohara C. et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f

Li W et al. Combined effects of CYP1A1 MspI and GSTM1 genetic polymorphisms on risk of lung cancer: an updated meta-analysis. Tumour Biol. 2014 Sep,35(9):9281-90. https://doi.org/10.1007/s13277-014-2212-6

Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813

Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x

Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004

Song N et al. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001 Jan,22(1):11-6. https://doi.org/10.1093/carcin/22.1.11

Taioli E et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol. 2003 Feb,32(1):60-3. https://doi.org/10.1093/ije/dyg001

Wright CM et al. Genetic association study of CYP1A1 polymorphisms identifies risk haplotypes in nonsmall cell lung cancer. Eur Respir J. 2010 Jan,35(1):152-9. https://doi.org/10.1183/09031936.00120808

Vineis P et al. CYP1A1, GSTM1 and GSTT1 polymorphisms and lung cancer: a pooled analysis of gene-gene interactions. Biomarkers. 2004 May Jun,9(3):298-305. https://doi.org/10.1080/13547500400011070

Xu X et al. Cytochrome P450 CYP1A1 MspI polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1996 Sep,5(9):687-92. 

 

GSTM1:

Ford JG et al. Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis. 2000 Nov,21(11):1971-5. https://doi.org/10.1093/carcin/21.11.1971

Jiang XY et al. Susceptibility of lung cancer with polymorphisms of CYP1A1, GSTM1, GSTM3, GSTT1 and GSTP1 genotypes in the population of Inner Mongolia region. Asian Pac J Cancer Prev. 2014,15(13):5207-14. https://doi.org/10.7314/apjcp.2014.15.13.5207

Kiyohara C et al. Risk modification by CYP1A1 and GSTM1 polymorphisms in the association of environmental tobacco smoke and lung cancer: a case control study in Japanese nonsmoking women. Int J Cancer. 2003 Oct 20,107(1):139-44. https://doi.org/10.1002/ijc.11355

Li W et al. Combined effects of CYP1A1 MspI and GSTM1 genetic polymorphisms on risk of lung cancer: an updated meta-analysis. Tumour Biol. 2014 Sep,35(9):9281-90. https://doi.org/10.1007/s13277-014-2212-6

Li W et al. Polymorphisms in GSTM1, CYP1A1, CYP2E1, and CYP2D6 are associated with susceptibility and chemotherapy response in non-small-cell lung cancer patients. Lung. 2012 Feb,190(1):91-8. https://doi.org/10.1007/s00408-011-9338-8

Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x

Pliarchopoulou K et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett. 2012 Jun,3(6):1301-1306. https://doi.org/10.3892/ol.2012.665

Pinarbasi H et al. Strong association between the GSTM1-null genotype and lung cancer in a Turkish population. Cancer Genet Cytogenet. 2003 Oct 15,146(2):125-9. https://doi.org/10.1016/s0165-4608(03)00059-1

Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004

Yang H et al. The association of GSTM1 deletion polymorphism with lung cancer risk in Chinese population: evidence from an updated meta-analysis. Sci Rep. 2015 Mar 23,5:9392. https://doi.org/10.1038/srep09392

 


GSTT1:

Gui Q et al. The present/null polymorphism in the GSTT1 gene and the risk of lung cancer in Chinese population. Tumour Biol. 2013 Dec,34(6):3465-9. https://doi.org/10.1007/s13277-013-0923-8

Kumar M et al. Lung cancer risk in north Indian population: role of genetic polymorphisms and smoking. Mol Cell Biochem. 2009 Feb,322(1-2):73-9. https://doi.org/10.1007/s11010-008-9941-z

Pan Cet al. Glutathione S-transferase T1 and M1 polymorphisms are associated with lung cancer risk in a gender-specific manner. Oncol Res Treat. 2014,37(4):164-9. https://doi.org/10.1159/000361083

Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x 

Shukla RK et al. Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev. 2013,14(5):3345-9. https://doi.org/10.7314/apjcp.2013.14.5.3345

Sørensen M et al. Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer. Int J Cancer. 2004 Jun 10,110(2):219-24. https://doi.org/10.1002/ijc.20075

Sreeja L et al. Possible risk modification by CYP1A1, GSTM1 and GSTT1 gene polymorphisms in lung cancer susceptibility in a South Indian population. J Hum Genet. 2005,50(12):618-27. https://doi.org/10.1007/s10038-005-0303-3

Taioli E et al. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age of 45 years. Int J Epidemiol. 2003 Feb,32(1):60-3. https://doi.org/10.1093/ije/dyg001

Wang Y et al. The association of GSTT1 deletion polymorphism with lung cancer risk among Chinese population: evidence based on a cumulative meta-analysis. Onco Targets Ther. 2015 Oct 12,8:2875-82. https://doi.org/10.2147/OTT.S93745

Wang Y et al. Glutathione S-transferase T1 gene deletion polymorphism and lung cancer risk in Chinese population: a meta-analysis. Cancer Epidemiol. 2010 Oct,34(5):593-7. https://doi.org/10.1016/j.canep.2010.05.008

 


GSTP1 (rs1695):

Chen X et al. Glutathione S-transferase P1 gene Ile105Val polymorphism might be associated with lung cancer risk in the Chinese Han population. Tumour Biol. 2012 Dec,33(6):1973-81.

Kiyohara C. Et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f

Li XM et al. Glutathione S-transferase P1, gene-gene interaction, and lung cancer susceptibility in the Chinese population: An updated meta-analysis and review. J Cancer Res Ther. 2015 Jul-Sep,11(3):565-70. https://doi.org/10.4103/0973-1482.163788

Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813

Pliarchopoulou K et al. Correlation of CYP1A1, GSTP1 and GSTM1 gene polymorphisms and lung cancer risk among smokers. Oncol Lett. 2012 Jun,3(6):1301-1306. https://doi.org/10.3892/ol.2012.665

Risch A et al. Glutathione-S-transferase M1, M3, T1 and P1 polymorphisms and susceptibility to non-small-cell lung cancer subtypes and hamartomas. Pharmacogenetics. 2001 Dec,11(9):757-64. https://doi.org/10.1097/00008571-200112000-00003

Sreeja L et al. Glutathione S-transferase M1, T1 and P1 polymorphisms: susceptibility and outcome in lung cancer patients. J Exp Ther Oncol. 2008,7(1):73-85. 

Stücker I et al. Genetic polymorphisms of glutathione S-transferases as modulators of lung cancer susceptibility. Carcinogenesis. 2002 Sep,23(9):1475-81. https://doi.org/10.1093/carcin/23.9.1475

Wang Y et al. Correlation between metabolic enzyme GSTP1 polymorphisms and susceptibility to lung cancer. Exp Ther Med. 2015 Oct,10(4):1521-1527. https://doi.org/10.3892/etm.2015.2666

Yang M et al. Combined effects of genetic polymorphisms in six selected genes on lung cancer susceptibility. Lung Cancer. 2007 Aug,57(2):135-42. https://doi.org/10.1016/j.lungcan.2007.03.005

 


CYP1A1 (rs1048943):

Atinkaya C. Et al. The effect of CYP1A1, GSTT1 and GSTM1 polymorphisms on the risk of lung cancer: a case-control study. Hum Exp Toxicol. 2012 Oct,31(10):1074-80. https://doi.org/10.1177/0960327111428630

Drakoulis N et al. Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3′-flanking region. Clin Investig. 1994 Feb,72(3):240-8https://doi.org/10.1007/BF00189321

Hung RJ et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis. 2003 May,24(5):875-82. https://doi.org/10.1093/carcin/bgg026 

Hussein AG et al. CYP1A1 gene polymorphisms and smoking status as modifier factors for lung cancer risk. Gene. 2014 May 10,541(1):26-30. https://doi.org/10.1016/j.gene.2014.03.003

Islam MS et al. Epub 2012 Nov 21. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013 Feb 1,416:11-9. https://doi.org/10.1016/j.cca.2012.11.011

Kumar M et al. Lung cancer risk in north Indian population: role of genetic polymorphisms and smoking. Mol Cell Biochem. 2009 Feb,322(1-2):73-9. https://doi.org/10.1007/s11010-008-9941-z

Kiyohara C. Et al. Genetic polymorphisms involved in carcinogen metabolism and DNA repair and lung cancer risk in a Japanese population. J Thorac Oncol. 2012 Jun,7(6):954-62. https://doi.org/10.1097/JTO.0b013e31824de30f

Liu HX et al. Correlation between gene polymorphisms of CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 and susceptibility to lung cancer. Genet Mol Res. 2016 Nov 3,15(4). https://doi.org/10.4238/gmr15048813

Peddireddy V et al. Association of CYP1A1, GSTM1 and GSTT1 gene polymorphisms with risk of non-small cell lung cancer in Andhra Pradesh region of South India. Eur J Med Res. 2016 Apr 18,21:17. https://doi.org/10.1186/s40001-016-0209-x

Raimondi S et al. Metabolic gene polymorphisms and lung cancer risk in non-smokers. An update of the GSEC study. Mutat Res. 2005 Dec 30,592(1-2):45-57. https://doi.org/10.1016/j.mrfmmm.2005.06.002

Shi X et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008 Feb,59(2):155-63. https://doi.org/10.1016/j.lungcan.2007.08.004

Sobti RC et al. Genetic polymorphism of the CYP1A1, CYP2E1, GSTM1 and GSTT1 genes and lung cancer susceptibility in a north indian population. Mol Cell Biochem. 2004 Nov,266(1-2):1-9. https://doi.org/10.1023/b:mcbi.0000049127.33458.87

Song N et al. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis. 2001 Jan,22(1):11-6. https://doi.org/10.1093/carcin/22.1.11

Wright CM et al. Genetic association study of CYP1A1 polymorphisms identifies risk haplotypes in nonsmall cell lung cancer. Eur Respir J. 2010 Jan,35(1):152-9. https://doi.org/10.1183/09031936.00120808

Yang XR et al. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women. Cancer Lett. 2004 Oct 28,214(2):197-204. https://doi.org/10.1016/j.canlet.2004.06.040


Col1A1 (rs1800012):

Jin et al. Polymorphisms in the 5′ flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int. 2011 Mar,22(3):911-21. https://doi.org/10.1007/s00198-010-1364-5

Mann V et a. Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone. 2003 Jun,32(6):711-7. https://doi.org/10.1016/s8756-3282(03)00087-5

Qureshi et al. COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcif Tissue Int. 2002 Mar,70(3):158-63. Epub 2002 Feb 19. https://doi.org/10.1007/s00223-001-1035-9

 

VDR (rs1544410):

Creatsa M et al. The effect of vitamin D receptor BsmI genotype on the response to osteoporosis treatment in postmenopausal women: a pilot study. J Obstet Gynaecol Res. 2011 Oct,37(10):1415-22. https://doi.org/10.1111/j.1447-0756.2011.01557.x

Jia et al. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013 Jan,17(1):30-4. https://doi.org/10.1089/gtmb.2012.0267

Marc J et al. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporos Int.  1999,10(4):303-6. https://doi.org/10.1007/s001980050231

Mossetti G et al. Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treatment in patients with Paget’s disease of bone. Calcif Tissue Int. 2008 Dec,83(6):414-24. https://doi.org/10.1007/s00223-008-9193-7

Palomba et al. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmenopausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporos Int. 2005 Aug,16(8):943-52. Epub 2005 Mar 1. https://doi.org/10.1007/s00198-004-1800-5

Palomba et al. Raloxifene administration in post-menopausal women with osteoporosis: effect of different BsmI vitamin D receptor genotypes. Hum Reprod. 2003 Jan,18(1):192-8. https://doi.org/10.1093/humrep/deg031

 

ESR1 (rs2234693):

Gennari L et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am J Epidemiol. 2005 Feb 15,161(4):307-20. https://doi.org/10.1093/aje/kwi055

Herrington DM et al. Estrogen-receptor polymorphisms and effects of estrogen replacement on high-density lipoprotein cholesterol in women with coronary disease. N Engl J Med. 2002 Mar 28,346(13):967-74. https://doi.org/10.1056/NEJMoa012952

Herrington DM et al. Common estrogen receptor polymorphism augments effects of hormone replacement therapy on E-selectin but not C-reactive protein. Circulation. 2002 Apr 23,105(16):1879-82. https://doi.org/10.1161/01.cir.0000016173.98826.88

van Meurs JB et al. Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet. 2003 Jul 15,12(14):1745-54. https://doi.org/10.1093/hmg/ddg176

 

LCT (rs4988235):

Almon R et al. Lactase non-persistence as a determinant of milk avoidance and calcium intake in children and adolescents. J Nutr Sci. 2013 Jul 24,2:e26. https://doi.org/10.1017/jns.2013.11

Bácsi Ket al. LCT 13910 C/T polymorphism, serum calcium, and bone mineral density in postmenopausal women. Osteoporosis International, 20(4), 639–645. https://doi.org/10.1007/s00198-008-0709-9

Koek, W. N., et al. (2010). The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 25(9), 1980–1987. https://doi.org/10.1002/jbmr.83

Kuchay RA et al. Effect of C/T -13910 cis-acting regulatory variant on expression and activity of lactase in Indian children and its implication for early genetic screening of adult-type hypolactasia. Clin Chim Acta. 2011 Oct 9,412(21-22):1924-30. https://doi.org/10.1016/j.cca.2011.06.032

Laaksonen MM et al. Genetic lactase non-persistence, consumption of milk products and intakes of milk nutrients in Finns from childhood to young adulthood. Br J Nutr. 2009 Jul,102(1):8-17. https://doi.org/10.1017/S0007114508184677

Tolonen S et al. Cardiovascular Risk in Young Finns Study Group. (2011). Lactase Gene C/T−13910 Polymorphism, Calcium Intake, and pQCT Bone Traits in Finnish Adults. Calcified Tissue International, 88(2), 153–161. https://doi.org/10.1007/s00223-010-9440-6


TNF-α (rs1800629):

Dayer et al. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii3–ii10. https://doi.org/10.1093/rheumatology/keg326

Goldring et al. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii11–ii16. https://doi.org/10.1093/rheumatology/keg327

Oregón-Romero et al. Tumor necrosis factor alpha-308 and -238 polymorphisms in rheumatoid arthritis. Association with messenger RNA expression and sTNF-alpha. J Investig Med. 2008 Oct,56(7):937-43. https://doi.org/10.2310/JIM.0b013e318189152b

 

IL1A (rs1800587):

Dayer et al. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii3–ii10. https://doi.org/10.1093/rheumatology/keg326

Goldring et al. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology 2003,42(Suppl. 2):ii11–ii16. https://doi.org/10.1093/rheumatology/keg327

Virtanen et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976). 2007 May 1,32(10):1129-34. https://doi.org/10.1097/01.brs.0000261473.03274.5c

 

Analysierte Gene

Hicks JK et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective
Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug,98(2):127-34. https://doi.org/10.1002/cpt.147

Stüven et al. Rapid detection of CYP2D6 null alleles by long distance- and multiplex-polymerase chain reaction. Pharmacogenetics. 1996 Oct,6(5):417-21. https://doi.org/10.1097/00008571-199610000-00005

Zhou SF. et al. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet. 2009,48(11):689-723. https://doi.org/10.2165/11318030-000000000-00000

Gatanaga H et al. Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin Infect Dis. 2007
Nov 1,45(9):1230-7. https://doi.org/10.1086/522175

Kharasch ED et al. Methadone Pharmacogenetics: CYP2B6 Polymorphisms Determine Plasma Concentrations, Clearance, and Metabolism.
Anesthesiology. 2015 Nov,123(5):1142-53. https://doi.org/10.1097/ALN.0000000000000867

Zanger UM et al. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front
Genet. 2013 Mar 5,4:24. https://doi.org/10.3389/fgene.2013.00024

https://www.pharmgkb.org/gene/PA123

Hubacek JA. et al. Drug metabolising enzyme polymorphisms in Middle- and Eastern-European Slavic populations. Drug Metabol Drug Interact.
2014,29(1):29-36. https://doi.org/10.1515/dmdi-2013-0052

Kuo HW et al. CYP1A2 genetic polymorphisms are associated with early antidepressant escitalopram metabolism and adverse reactions.
Pharmacogenomics. 2013 Jul,14(10):1191-201. https://doi.org/10.2217/pgs.13.105

Lin KM et al. CYP1A2 genetic polymorphisms are associated with treatment response to the antidepressant paroxetine. Pharmacogenomics. 2010
Nov,11(11):1535-43. https://doi.org/10.2217/pgs.10.128

Hicks JK et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective
Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015 Aug,98(2):127-34. https://doi.org/10.1002/cpt.147

Hodgson K. et al. Genetic differences in cytochrome P450 enzymes and antidepressant treatment response. J Psychopharmacol. 2014
Feb,28(2):133-41. https://doi.org/10.1177/0269881113512041

Sheffield L. J. et al. Clinical use of pharmacogenomic tests in 2009. Clin Biochem Rev. 2009 May,30(2):55-65. 

Johnson JA et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin
Pharmacol Ther. 2011 Oct,90(4):625-9. https://doi.org/10.1038/clpt.2011.185

Lindh JD et al. Influence of CYP2C9 genotype on warfarin dose requirements–a systematic review and meta-analysis. Eur J Clin Pharmacol. 2009
Apr,65(4):365-75. https://doi.org/10.1007/s00228-008-0584-5

Van Booven D. et al. Cytochrome P450 2C9-CYP2C9 Pharmacogenetics and genomics (2010) https://doi.org/10.1097/FPC.0b013e3283349e84

Chiang TS et al. Enhancement of CYP3A4 Activity in Hep G2 Cells by Lentiviral Transfection of Hepatocyte Nuclear Factor-1 Alpha. PLoS One. 2014 Apr
14,9(4):e94885. https://doi.org/10.1371/journal.pone.0094885

Lee JS et al. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J Physiol Pharmacol. 2013 Dec,17(6):479-84. https://doi.org/10.4196/kjpp.2013.17.6.479

Okubo M et al. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver
microsomes. J Toxicol Sci. 2013,38(3):349-54. https://doi.org/10.2131/jts.38.349

https://www.pharmgkb.org/gene/PA131

KA Birdwell et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin
Pharmacol Ther. 2015 Jul, 98(1): 19–24. https://doi.org/10.1002/cpt.113

Lamba J et al. PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenet Genomics. 2012 Jul,22(7):555-8. https://doi.org/10.1097/FPC.0b013e328351d47f

De Bock L. et al. Quantification of cytochrome 2E1 in human liver microsomes using a validated indirect ELISA. J Pharm Biomed Anal. 2014 Jan
25,88:536-41. https://doi.org/10.1016/j.jpba.2013.09.008

Sheng YJ et al. The association between CYP2E1 polymorphisms and hepatotoxicity due to anti-tuberculosis drugs: A meta-analysis. Infect Genet
Evol. 2014 Jun,24:34-40. https://doi.org/10.1016/j.meegid.2014.01.034

Wang FJ et al. Update meta-analysis of the CYP2E1 RsaI/PstI and DraI polymorphisms and risk of antituberculosis drug-induced hepatotoxicity:
evidence from 26 studies. J Clin Pharm Ther. 2016 Jun,41(3):334-40.  https://doi.org/10.1111/jcpt.12388

Barbieri R. B. et al. Genes of detoxification are important modulators of hereditary medullary thyroid carcinoma risk. Clin Endocrinol (Oxf). 2013
Aug,79(2):288-93. https://doi.org/10.1111/cen.12136

Daly A. K. et al. Pharmacogenomics of adverse drug reactions. Genome Med. 2013 Jan 29,5(1):5. https://doi.org/10.1186/gm409

Int. braz j urol. vol.30 no.4 Rio de Janeiro Jul., Aug. 2004, Rama D. Mittal, Daya S.L. Srivastava, Anil Mandhani, https://doi.org/10.1111/cen.12136

Anderson J. L. et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation.
2007 Nov 27,116(22):2563-70 https://doi.org/10.1161/CIRCULATIONAHA.107.737312

Dean L. et al. Warfarin Therapy and the Genotypes CYP2C9 and VKORC1. 2012 Mar 8. Medical Genetics Summaries. 

Flockhart D. A. et al. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med. 2008 Feb,10(2):139-50. https://doi.org/10.1097/GIM.0b013e318163c35f

International Warfarin Pharmacogenetics Consortium Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009
Feb 19,360(8):753-64. https://doi.org/10.1056/NEJMoa0809329

Pop TR et al. An acenocoumarol dose algorithm based on a South-Eastern European population. https://doi.org/10.1007/s00228-013-1551-3

Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34

Amstutz U et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and
Fluoropyrimidine Dosing: 2017 Update. Clin Pharmacol Ther. 2018 Feb103(2):210-216. https://doi.org/10.1002/cpt.911

Caudle KE et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and
fluoropyrimidine dosing. Clin Pharmacol Ther. 2013 Dec,94(6):640-5. https://doi.org/10.1038/clpt.2013.172

Mattison LK et al. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics.
Pharmacogenomics. 2002 Jul,3(4):485-92. https://doi.org/10.1517/14622416.3.4.485

Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34

Becker et al. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of
sulfonylurea. Pharmacogenet Genomics. 2008 Jul,18(7):591-7. https://doi.org/10.1097/FPC.0b013e328300e8c5

Tomás M et al. Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. JACC. 2010 Jun
15,55(24):2745-52.  https://doi.org/10.1016/j.jacc.2009.12.065

Treuer AV et al. NOS1AP modulates intracellular Ca(2+) in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy. Int J Physiol
Pathophysiol Pharmacol. 2014 Mar 13,6(1):37-46. eCollection 2014. 

Ramsey LB et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update.
Clin Pharmacol Ther. 2014 Oct,96(4):423-8. https://doi.org/10.1038/clpt.2014.125

SEARCH Collaborative Group et al. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med. 2008 Aug 21,359(8):789-99. https://doi.org/10.1056/NEJMoa0801936

Wilke RA et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin
Pharmacol Ther. 2012 Jul,92(1):112-7. https://doi.org/10.1038/clpt.2012.57

 

Barbarino JM et al. PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet Genomics. 2014 Mar,24(3):177-83. https://doi.org/10.1097/FPC.0000000000000024

Gammal RS et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol
Ther. 2016 Apr,99(4):363-9. https://doi.org/10.1002/cpt.269

Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34

Vardhanabhuti S et al. Screening for UGT1A1 Genotype in Study A5257 Would Have Markedly Reduced Premature Discontinuation of Atazanavir for
Hyperbilirubinemia. Open Forum Infect Dis. 2015 Jul 1,2(3):ofv085. https://doi.org/10.1093/ofid/ofv085

Relling MV et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine
dosing: 2018 update. Clin Pharmacol Ther. 2013 Apr,93(4):324-5. https://doi.org/10.1002/cpt.1304

Relling MV et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine
dosing. Clin Pharmacol Ther. 2011 Mar,89(3):387-91. https://doi.org/10.1038/clpt.2010.320

Swen JJ et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011 May,89(5):662-73. https://doi.org/10.1038/clpt.2011.34

Wissenschaftlich belegt

Je nach gewählter genetischer Analyse werden bis zu 200 genetische Variationen analysiert, welche allesamt bestens erforscht und gut dokumentiert sind. Um in unser Portfolio aufgenommen zu werden, muss jede Genvariante durch unabhängige, wissenschaftlich akkreditierte und von Experten begutachtete Studien untersucht und verifiziert werden. Erfahren Sie mehr über die benutzte Literatur in unserem Literaturverzeichnis!

Alle NovoMedic-Analysen werden von unserem Partnerlabor direkt hier in Eugendorf, Österreich durchgeführt. Das gesamte Laborpersonal verfügt über langjährige Erfahrung in der Humangenetik und das Labor selbst erfüllt die zwingenden Anforderungen der Österreichischen Gentechnikkommission sowie das freiwillige ISO-Qualitätsmanagementsystem. Das Labor ist außerdem für die Durchführung medizinisch-genetischer Analysen zugelassen – das ist der höchste Akkreditierungsstandard im Bereich der Genomik.

Sie haben Fragen?

Wir arbeiten stets daran diese Liste möglichst aktuell zu halten, aber die Wissenschaft entwickelt sich besonders im Bereich der Genetik sehr schnell weiter. Sollten Sie daher Fragen oder Anregungen zu den oben genannten Quelltexten haben, freuen wir uns sehr von Ihnen zu hören!